Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuropsychopharmacology ; 49(4): 720-730, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38049583

RESUMEN

One of the critical unmet medical needs in schizophrenia is the treatment for cognitive deficits. However, the neural circuit mechanisms of them remain unresolved. Previous studies utilizing animal models of schizophrenia did not consider the fact that patients with schizophrenia generally cannot discontinue antipsychotic medication due to the high risk of relapse. Here, we used multi-dimensional approaches, including histological analysis of the prelimbic cortex (PL), LC-MS/MS-based in vivo dopamine D2 receptor occupancy analysis for antipsychotics, in vivo calcium imaging, and behavioral analyses of mice using chemogenetics to investigate neural mechanisms and potential therapeutic strategies for working memory deficit in a chronic phencyclidine (PCP) mouse model of schizophrenia. Chronic PCP administration led to alterations in excitatory and inhibitory synapses, specifically in dendritic spines of pyramidal neurons, vesicular glutamate transporter 1 (VGLUT1) positive terminals, and parvalbumin (PV) positive GABAergic interneurons located in layer 2-3 of the PL. Continuous administration of olanzapine, which achieved a sustained therapeutic window of dopamine D2 receptor occupancy (60-80%) in the striatum, did not ameliorate these synaptic abnormalities and working memory deficit in the chronic PCP-treated mice. We demonstrated that chemogenetic activation of PV neurons in the PL, as confirmed by in vivo calcium imaging, ameliorated working memory deficit in this model even under clinically comparable olanzapine treatment which by itself inhibited only PCP-induced psychomotor hyperactivity. Our study suggests that targeting prefrontal PV neurons could be a promising therapeutic intervention for cognitive deficits in schizophrenia in combination with antipsychotic medication.


Asunto(s)
Antipsicóticos , Esquizofrenia , Animales , Humanos , Ratones , Antipsicóticos/uso terapéutico , Calcio , Cromatografía Liquida , Modelos Animales de Enfermedad , Interneuronas/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Olanzapina/efectos adversos , Parvalbúminas/metabolismo , Fenciclidina/farmacología , Corteza Prefrontal/metabolismo , Receptores de Dopamina D2 , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/patología , Espectrometría de Masas en Tándem
2.
Opt Express ; 30(22): 40292-40305, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36298964

RESUMEN

The MicroLED probe enables optogenetic control of neural activity in spatially separated brain regions. Understanding its heat generation characteristics is important. In this study, we investigated the temperature rise (ΔT) characteristics in the brain tissue using a MicroLED probe. The ΔT strongly depended on the surrounding environment of the probe, including the differences between the air and the brain, and the area touching the brain tissue. Through animal experiments, we suggest an in situ temperature monitoring method using temperature dependence on electrical characteristics of the MicroLED. Finally, optical stimulation by MicroLEDs proved effective in controlling optogenetic neural activity in animal models.


Asunto(s)
Encéfalo , Optogenética , Animales , Optogenética/métodos , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA