Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
CHEST Pulm ; 2(1)2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38737731

RESUMEN

BACKGROUND: Pulmonary nodules represent a growing health care burden because of delayed diagnosis of malignant lesions and overtesting for benign processes. Clinical prediction models were developed to inform physician assessment of pretest probability of nodule malignancy but have not been validated in a high-risk cohort of nodules for which biopsy was ultimately performed. RESEARCH QUESTION: Do guideline-recommended prediction models sufficiently discriminate between benign and malignant nodules when applied to cases referred for biopsy by navigational bronchoscopy? STUDY DESIGN AND METHODS: We assembled a prospective cohort of 322 indeterminate pulmonary nodules in 282 patients referred to a tertiary medical center for diagnostic navigational bronchoscopy between 2017 and 2019. We calculated the probability of malignancy for each nodule using the Brock model, Mayo Clinic model, and Veterans Affairs (VA) model. On a subset of 168 patients who also had PET-CT scans before biopsy, we also calculated the probability of malignancy using the Herder model. The performance of the models was evaluated by calculating the area under the receiver operating characteristic curves (AUCs) for each model. RESULTS: The study cohort contained 185 malignant and 137 benign nodules (57% prevalence of malignancy). The malignant and benign cohorts were similar in terms of size, with a median longest diameter for benign and malignant nodules of 15 and 16 mm, respectively. The Brock model, Mayo Clinic model, and VA model showed similar performance in the entire cohort (Brock AUC, 0.70; 95% CI, 0.64-0.76; Mayo Clinic AUC, 0.70; 95% CI, 0.64-0.76; VA AUC, 0.67; 95% CI, 0.62-0.74). For 168 nodules with available PET-CT scans, the Herder model had an AUC of 0.77 (95% CI, 0.68-0.85). INTERPRETATION: Currently available clinical models provide insufficient discrimination between benign and malignant nodules in the common clinical scenario in which a patient is being referred for biopsy, especially when PET-CT scan information is not available.

2.
BMC Cancer ; 24(1): 441, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594604

RESUMEN

BACKGROUND: We recently found that epiplakin 1 (EPPK1) alterations were present in 12% of lung adenocarcinoma (LUAD) cases and were associated with a poor prognosis in early-stage LUAD when combined with other molecular alterations. This study aimed to identify a probable crucial role for EPPK1 in cancer development. METHODS: EPPK1 mRNA and protein expression was analyzed with clinical variables. Normal bronchial epithelial cell lines were exposed to cigarette smoke for 16 weeks to determine whether EPPK1 protein expression was altered after exposure. Further, we used CRISPR-Cas9 to knock out (KO) EPPK1 in LUAD cell lines and observed how the cancer cells were altered functionally and genetically. RESULTS: EPPK1 protein expression was associated with smoking and poor prognosis in early-stage LUAD. Moreover, a consequential mesenchymal-to-epithelial transition was observed, subsequently resulting in diminished cell proliferation and invasion after EPPK1 KO. RNA sequencing revealed that EPPK1 KO induced downregulation of 11 oncogenes, 75 anti-apoptosis, and 22 angiogenesis genes while upregulating 8 tumor suppressors and 12 anti-cell growth genes. We also observed the downregulation of MYC and upregulation of p53 expression at both protein and RNA levels following EPPK1 KO. Gene ontology enrichment analysis of molecular functions highlighted the correlation of EPPK1 with the regulation of mesenchymal cell proliferation, mesenchymal differentiation, angiogenesis, and cell growth after EPPK1 KO. CONCLUSIONS: Our data suggest that EPPK1 is linked to smoking, epithelial to mesenchymal transition, and the regulation of cancer progression, indicating its potential as a therapeutic target for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Transición Epitelial-Mesenquimal/genética , Pronóstico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
4.
Biom J ; 66(1): e2200222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36737675

RESUMEN

Although new biostatistical methods are published at a very high rate, many of these developments are not trustworthy enough to be adopted by the scientific community. We propose a framework to think about how a piece of methodological work contributes to the evidence base for a method. Similar to the well-known phases of clinical research in drug development, we propose to define four phases of methodological research. These four phases cover (I) proposing a new methodological idea while providing, for example, logical reasoning or proofs, (II) providing empirical evidence, first in a narrow target setting, then (III) in an extended range of settings and for various outcomes, accompanied by appropriate application examples, and (IV) investigations that establish a method as sufficiently well-understood to know when it is preferred over others and when it is not; that is, its pitfalls. We suggest basic definitions of the four phases to provoke thought and discussion rather than devising an unambiguous classification of studies into phases. Too many methodological developments finish before phase III/IV, but we give two examples with references. Our concept rebalances the emphasis to studies in phases III and IV, that is, carefully planned method comparison studies and studies that explore the empirical properties of existing methods in a wider range of problems.


Asunto(s)
Bioestadística , Proyectos de Investigación
5.
Cancer Biomark ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38073376

RESUMEN

BACKGROUND: Assessing the clinical utility of biomarkers is a critical step before clinical implementation. The reclassification of patients across clinically relevant subgroups is considered one of the best methods to estimate clinical utility. However, there are important limitations with this methodology. We recently proposed the intervention probability curve (IPC) which models the likelihood that a provider will choose an intervention as a continuous function of the probability, or risk, of disease. OBJECTIVE: To assess the potential impact of a new biomarker for lung cancer using the IPC. METHODS: The IPC derived from the National Lung Screening Trial was used to assess the potential clinical utility of a biomarker for suspected lung cancer. The summary statistics of the change in likelihood of intervention over the population can be interpreted as the expected clinical impact of the added biomarker. RESULTS: The IPC analysis of the novel biomarker estimated that 8% of the benign nodules could avoid an invasive procedure while the cancer nodules would largely remain unchanged (0.1%). We showed the benefits of this approach compared to traditional reclassification methods based on thresholds. CONCLUSIONS: The IPC methodology can be a valuable tool for assessing biomarkers prior to clinical implementation.

6.
Sci Rep ; 13(1): 17604, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848457

RESUMEN

Lung adenocarcinoma (LUAD) is the predominant type of lung cancer in the U.S. and exhibits a broad variety of behaviors ranging from indolent to aggressive. Identification of the biological determinants of LUAD behavior at early stages can improve existing diagnostic and treatment strategies. Extracellular matrix (ECM) remodeling and cancer-associated fibroblasts play a crucial role in the regulation of cancer aggressiveness and there is a growing need to investigate their role in the determination of LUAD behavior at early stages. We analyzed tissue samples isolated from patients with LUAD at early stages and used imaging-based biomarkers to predict LUAD behavior. Single-cell RNA sequencing and histological assessment showed that aggressive LUADs are characterized by a decreased number of ADH1B+ CAFs in comparison to indolent tumors. ADH1B+ CAF enrichment is associated with distinct ECM and immune cell signatures in early-stage LUADs. Also, we found a positive correlation between the gene expression of ADH1B+ CAF markers in early-stage LUADs and better survival. We performed TCGA dataset analysis to validate our findings. Identified associations can be used for the development of the predictive model of LUAD aggressiveness and novel therapeutic approaches.


Asunto(s)
Adenocarcinoma del Pulmón , Fibroblastos Asociados al Cáncer , Síndrome de DiGeorge , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/genética , Agresión , Neoplasias Pulmonares/genética , Pronóstico , Biomarcadores de Tumor/genética
7.
Radiology ; 309(1): e222904, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37815447

RESUMEN

The implementation of low-dose chest CT for lung screening presents a crucial opportunity to advance lung cancer care through early detection and interception. In addition, millions of pulmonary nodules are incidentally detected annually in the United States, increasing the opportunity for early lung cancer diagnosis. Yet, realization of the full potential of these opportunities is dependent on the ability to accurately analyze image data for purposes of nodule classification and early lung cancer characterization. This review presents an overview of traditional image analysis approaches in chest CT using semantic characterization as well as more recent advances in the technology and application of machine learning models using CT-derived radiomic features and deep learning architectures to characterize lung nodules and early cancers. Methodological challenges currently faced in translating these decision aids to clinical practice, as well as the technical obstacles of heterogeneous imaging parameters, optimal feature selection, choice of model, and the need for well-annotated image data sets for the purposes of training and validation, will be reviewed, with a view toward the ultimate incorporation of these potentially powerful decision aids into routine clinical practice.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X
8.
JTO Clin Res Rep ; 4(9): 100504, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37674811

RESUMEN

Introduction: Lung cancer is the deadliest cancer in the United States and worldwide, and lung adenocarcinoma (LUAD) is the most prevalent histologic subtype in the United States. LUAD exhibits a wide range of aggressiveness and risk of recurrence, but the biological underpinnings of this behavior are poorly understood. Past studies have focused on the biological characteristics of the tumor itself, but the ability of the immune response to contain tumor growth represents an alternative or complementary hypothesis. Emerging technologies enable us to investigate the spatial distribution of specific cell types within the tumor nest and characterize this immune response. This study aimed to investigate the association between immune cell density within the primary tumor and recurrence-free survival (RFS) in stage I and II LUAD. Methods: This study is a prospective collection with retrospective evaluation. A total of 100 patients with surgically resected LUAD and at least 5-year follow-ups, including 69 stage I and 31 stages II tumors, were enrolled. Multiplexed immunohistochemistry panels for immune markers were used for measurement. Results: Cox regression models adjusted for sex and EGFR mutation status revealed that the risk of recurrence was reduced by 50% for the unit of one interquartile range (IQR) change in the tumoral T-cell (adjusted hazard ratio per IQR increase = 0.50, 95% confidence interval: 0.27-0.93) and decreased by 64% in mast cell density (adjusted hazard ratio per IQR increase = 0.36, confidence interval: 0.15-0.84). The analyses were reported without the type I error correction for the multiple types of immune cell testing. Conclusions: Analysis of the density of immune cells within the tumor and surrounding stroma reveals an association between the density of T-cells and RFS and between mast cells and RFS in early-stage LUAD. This preliminary result is a limited study with a small sample size and a lack of an independent validation set.

9.
Chest ; 164(2): 478-480, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37558330
10.
Nephrol Dial Transplant ; 39(1): 36-44, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37403325

RESUMEN

BACKGROUND: Kidney transplantation is the preferred treatment for eligible patients with kidney failure who need renal replacement therapy. However, it remains unclear whether the anticipated survival benefit from kidney transplantation is different for women and men. METHODS: We included all dialysis patients recorded in the Austrian Dialysis and Transplant Registry who were waitlisted for their first kidney transplant between 2000 and 2018. In order to estimate the causal effect of kidney transplantation on 10-year restricted mean survival time, we mimicked a series of controlled clinical trials and applied inverse probability of treatment and censoring weighted sequential Cox models. RESULTS: This study included 4408 patients (33% female) with a mean age of 52 years. Glomerulonephritis was the most common primary renal disease both in women (27%) and men (28%). Kidney transplantation led to a gain of 2.22 years (95% CI 1.88 to 2.49) compared with dialysis over a 10-year follow-up. The effect was smaller in women (1.95 years, 95% CI 1.38 to 2.41) than in men (2.35 years, 95% CI 1.92 to 2.70) due to a better survival on dialysis. Across ages the survival benefit of transplantation over a follow-up of 10 years was smaller in younger women and men and increased with age, showing a peak for both women and men aged about 60 years. CONCLUSIONS: There were few differences in survival benefit by transplantation between females and males. Females had better survival than males on the waitlist receiving dialysis and similar survival to males after transplantation.


Asunto(s)
Fallo Renal Crónico , Trasplante de Riñón , Humanos , Masculino , Femenino , Persona de Mediana Edad , Diálisis Renal , Fallo Renal Crónico/cirugía , Estudios Retrospectivos , Caracteres Sexuales
11.
Cancer Res Commun ; 3(7): 1350-1365, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37501683

RESUMEN

Lung adenocarcinoma (LUAD) is a heterogeneous group of tumors associated with different survival rates, even when detected at an early stage. Here, we aim to investigate the biological determinants of early LUAD indolence or aggressiveness using radiomics as a surrogate of behavior. We present a set of 92 patients with LUAD with data collected across different methodologies. Patients were risk-stratified using the CT-based Score Indicative of Lung cancer Aggression (SILA) tool (0 = least aggressive, 1 = most aggressive). We grouped the patients as indolent (x ≤ 0.4, n = 14), intermediate (0.4 > x ≤ 0.6, n = 27), and aggressive (0.6 > x ≤ 1, n = 52). Using Cytometry by time of flight (CyTOF), we identified subpopulations with high HLA-DR expression that were associated with indolent behavior. In the RNA sequencing (RNA-seq) dataset, pathways related to immune response were associated with indolent behavior, while pathways associated with cell cycle and proliferation were associated with aggressive behavior. We extracted quantitative radiomics features from the CT scans of the patients. Integrating these datasets, we identified four feature signatures and four patient clusters that were associated with survival. Using single-cell RNA-seq, we found that indolent tumors had significantly more T cells and less B cells than aggressive tumors, and that the latter had a higher abundance of regulatory T cells and Th cells. In conclusion, we were able to uncover a correspondence between radiomics and tumor biology, which could improve the discrimination between indolent and aggressive LUAD tumors, enhance our knowledge in the biology of these tumors, and offer novel and personalized avenues for intervention. Significance: This study provides a comprehensive profiling of LUAD indolence and aggressiveness at the biological bulk and single-cell levels, as well as at the clinical and radiomics levels. This hypothesis generating study uncovers several potential future research avenues. It also highlights the importance and power of data integration to improve our systemic understanding of LUAD and to help reduce the gap between basic science research and clinical practice.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Multiómica , Adenocarcinoma del Pulmón/diagnóstico por imagen , Agresión , Adenocarcinoma/genética , Neoplasias Pulmonares/genética
12.
Chest ; 164(4): 1028-1041, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37244587

RESUMEN

Lung cancer is the leading cause of cancer-related deaths. Early detection and diagnosis are critical, as survival decreases with advanced stages. Approximately 1.6 million nodules are incidentally detected every year on chest CT scan images in the United States. This number of nodules identified is likely much larger after accounting for screening-detected nodules. Most of these nodules, whether incidentally or screening detected, are benign. Despite this, many patients undergo unnecessary invasive procedures to rule out cancer because our current stratification approaches are suboptimal, particularly for intermediate probability nodules. Thus, noninvasive strategies are urgently needed. Biomarkers have been developed to assist through the continuum of lung cancer care and include blood protein-based biomarkers, liquid biopsies, quantitative imaging analysis (radiomics), exhaled volatile organic compounds, and bronchial or nasal epithelium genomic classifiers, among others. Although many biomarkers have been developed, few have been integrated into clinical practice as they lack clinical utility studies showing improved patient-centered outcomes. Rapid technologic advances and large network collaborative efforts will continue to drive the discovery and validation of many novel biomarkers. Ultimately, however, randomized clinical utility studies showing improved patient outcomes will be required to bring biomarkers into clinical practice.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Nódulos Pulmonares Múltiples/diagnóstico , Neoplasias Pulmonares/patología , Biomarcadores , Tomografía Computarizada por Rayos X/métodos , Proteínas Sanguíneas
13.
Sci Rep ; 13(1): 6157, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061539

RESUMEN

A deep learning model (LCP CNN) for the stratification of indeterminate pulmonary nodules (IPNs) demonstrated better discrimination than commonly used clinical prediction models. However, the LCP CNN score is based on a single timepoint that ignores longitudinal information when prior imaging studies are available. Clinically, IPNs are often followed over time and temporal trends in nodule size or morphology inform management. In this study we investigated whether the change in LCP CNN scores over time was different between benign and malignant nodules. This study used a prospective-specimen collection, retrospective-blinded-evaluation (PRoBE) design. Subjects with incidentally or screening detected IPNs 6-30 mm in diameter with at least 3 consecutive CT scans prior to diagnosis (slice thickness ≤ 1.5 mm) with the same nodule present were included. Disease outcome was adjudicated by biopsy-proven malignancy, biopsy-proven benign disease and absence of growth on at least 2-year imaging follow-up. Lung nodules were analyzed using the Optellum LCP CNN model. Investigators performing image analysis were blinded to all clinical data. The LCP CNN score was determined for 48 benign and 32 malignant nodules. There was no significant difference in the initial LCP CNN score between benign and malignant nodules. Overall, the LCP CNN scores of benign nodules remained relatively stable over time while that of malignant nodules continued to increase over time. The difference in these two trends was statistically significant. We also developed a joint model that incorporates longitudinal LCP CNN scores to predict future probability of cancer. Malignant and benign nodules appear to have distinctive trends in LCP CNN score over time. This suggests that longitudinal modeling may improve radiomic prediction of lung cancer over current models. Additional studies are needed to validate these early findings.


Asunto(s)
Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Nódulo Pulmonar Solitario , Humanos , Estudios Retrospectivos , Estudios Prospectivos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Redes Neurales de la Computación , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Nódulo Pulmonar Solitario/diagnóstico por imagen , Pulmón/patología
14.
JAMA Netw Open ; 6(4): e231870, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37017968

RESUMEN

Importance: Type 2 diabetes increases the risk of progressive diabetic kidney disease, but reliable prediction tools that can be used in clinical practice and aid in patients' understanding of disease progression are currently lacking. Objective: To develop and externally validate a model to predict future trajectories in estimated glomerular filtration rate (eGFR) in adults with type 2 diabetes and chronic kidney disease using data from 3 European multinational cohorts. Design, Setting, and Participants: This prognostic study used baseline and follow-up information collected between February 2010 and December 2019 from 3 prospective multinational cohort studies: PROVALID (Prospective Cohort Study in Patients with Type 2 Diabetes Mellitus for Validation of Biomarkers), GCKD (German Chronic Kidney Disease), and DIACORE (Diabetes Cohorte). A total of 4637 adult participants (aged 18-75 years) with type 2 diabetes and mildly to moderately impaired kidney function (baseline eGFR of ≥30 mL/min/1.73 m2) were included. Data were analyzed between June 30, 2021, and January 31, 2023. Main Outcomes and Measures: Thirteen variables readily available from routine clinical care visits (age, sex, body mass index; smoking status; hemoglobin A1c [mmol/mol and percentage]; hemoglobin, and serum cholesterol levels; mean arterial pressure, urinary albumin-creatinine ratio, and intake of glucose-lowering, blood-pressure lowering, or lipid-lowering medication) were selected as predictors. Repeated eGFR measurements at baseline and follow-up visits were used as the outcome. A linear mixed-effects model for repeated eGFR measurements at study entry up to the last recorded follow-up visit (up to 5 years after baseline) was fit and externally validated. Results: Among 4637 adults with type 2 diabetes and chronic kidney disease (mean [SD] age at baseline, 63.5 [9.1] years; 2680 men [57.8%]; all of White race), 3323 participants from the PROVALID and GCKD studies (mean [SD] age at baseline, 63.2 [9.3] years; 1864 men [56.1%]) were included in the model development cohort, and 1314 participants from the DIACORE study (mean [SD] age at baseline, 64.5 [8.3] years; 816 men [62.1%]) were included in the external validation cohort, with a mean (SD) follow-up of 5.0 (0.6) years. Updating the random coefficient estimates with baseline eGFR values yielded improved predictive performance, which was particularly evident in the visual inspection of the calibration curve (calibration slope at 5 years: 1.09; 95% CI, 1.04-1.15). The prediction model had good discrimination in the validation cohort, with the lowest C statistic at 5 years after baseline (0.79; 95% CI, 0.77-0.80). The model also had predictive accuracy, with an R2 ranging from 0.70 (95% CI, 0.63-0.76) at year 1 to 0.58 (95% CI, 0.53-0.63) at year 5. Conclusions and Relevance: In this prognostic study, a reliable prediction model was developed and externally validated; the robust model was well calibrated and capable of predicting kidney function decline up to 5 years after baseline. The results and prediction model are publicly available in an accompanying web-based application, which may open the way for improved prediction of individual eGFR trajectories and disease progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Renal Crónica , Masculino , Adulto , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Tasa de Filtración Glomerular , Estudios Prospectivos , Progresión de la Enfermedad
16.
Cardiovasc Diabetol ; 22(1): 74, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36991445

RESUMEN

BACKGROUND: Chronic kidney disease (CKD) is a common comorbidity in people with diabetes mellitus, and a key risk factor for further life-threatening conditions such as cardiovascular disease. The early prediction of progression of CKD therefore is an important clinical goal, but remains difficult due to the multifaceted nature of the condition. We validated a set of established protein biomarkers for the prediction of trajectories of estimated glomerular filtration rate (eGFR) in people with moderately advanced chronic kidney disease and diabetes mellitus. Our aim was to discern which biomarkers associate with baseline eGFR or are important for the prediction of the future eGFR trajectory. METHODS: We used Bayesian linear mixed models with weakly informative and shrinkage priors for clinical predictors (n = 12) and protein biomarkers (n = 19) to model eGFR trajectories in a retrospective cohort study of people with diabetes mellitus (n = 838) from the nationwide German Chronic Kidney Disease study. We used baseline eGFR to update the models' predictions, thereby assessing the importance of the predictors and improving predictive accuracy computed using repeated cross-validation. RESULTS: The model combining clinical and protein predictors had higher predictive performance than a clinical only model, with an [Formula: see text] of 0.44 (95% credible interval 0.37-0.50) before, and 0.59 (95% credible interval 0.51-0.65) after updating by baseline eGFR, respectively. Only few predictors were sufficient to obtain comparable performance to the main model, with markers such as Tumor Necrosis Factor Receptor 1 and Receptor for Advanced Glycation Endproducts being associated with baseline eGFR, while Kidney Injury Molecule 1 and urine albumin-creatinine-ratio were predictive for future eGFR decline. CONCLUSIONS: Protein biomarkers only modestly improve predictive accuracy compared to clinical predictors alone. The different protein markers serve different roles for the prediction of longitudinal eGFR trajectories potentially reflecting their role in the disease pathway.


Asunto(s)
Diabetes Mellitus , Insuficiencia Renal Crónica , Humanos , Tasa de Filtración Glomerular , Teorema de Bayes , Receptor para Productos Finales de Glicación Avanzada , Estudios Retrospectivos , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/complicaciones , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/epidemiología , Biomarcadores , Progresión de la Enfermedad
17.
J Thorac Cardiovasc Surg ; 166(3): 669-678.e4, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36792410

RESUMEN

OBJECTIVE: Indeterminate pulmonary nodules (IPNs) represent a significant diagnostic burden in health care. We aimed to compare a combination clinical prediction model (Mayo Clinic model), fungal (histoplasmosis serology), imaging (computed tomography [CT] radiomics), and cancer (high-sensitivity cytokeratin fraction 21; hsCYFRA 21-1) biomarker approach to a validated prediction model in diagnosing lung cancer. METHODS: A prospective specimen collection, retrospective blinded evaluation study was performed in 3 independent cohorts with 6- to 30-mm IPNs (n = 281). Serum histoplasmosis immunoglobulin G and immunoglobulin M antibodies and hsCYFRA 21-1 levels were measured and a validated CT radiomic score was calculated. Multivariable logistic regression models were estimated with Mayo Clinic model variables, histoplasmosis antibody levels, CT radiomic score, and hsCYFRA 21-1. Diagnostic performance of the combination model was compared with that of the Mayo Clinic model. Bias-corrected clinical net reclassification index (cNRI) was used to estimate the clinical utility of a combination biomarker approach. RESULTS: A total of 281 patients were included (111 from a histoplasmosis-endemic region). The combination biomarker model including the Mayo Clinic model score, histoplasmosis antibody levels, radiomics, and hsCYFRA 21-1 level showed improved diagnostic accuracy for IPNs compared with the Mayo Clinic model alone with an area under the receiver operating characteristics curve of 0.80 (95% CI, 0.76-0.84) versus 0.72 (95% CI, 0.66-0.78). Use of this combination model correctly reclassified intermediate risk IPNs into low- or high-risk category (cNRI benign = 0.11 and cNRI malignant = 0.16). CONCLUSIONS: The addition of cancer, fungal, and imaging biomarkers improves the diagnostic accuracy for IPNs. Integrating a combination biomarker approach into the diagnostic algorithm of IPNs might decrease unnecessary invasive testing of benign nodules and reduce time to diagnosis for cancer.


Asunto(s)
Histoplasmosis , Neoplasias Pulmonares , Nódulos Pulmonares Múltiples , Humanos , Histoplasmosis/diagnóstico por imagen , Modelos Estadísticos , Estudios Retrospectivos , Estudios Prospectivos , Pronóstico , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Nódulos Pulmonares Múltiples/patología , Biomarcadores
18.
Cancer Epidemiol Biomarkers Prev ; 32(3): 329-336, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36535650

RESUMEN

BACKGROUND: Indeterminate pulmonary nodules (IPN) are a diagnostic challenge in regions where pulmonary fungal disease and smoking prevalence are high. We aimed to determine the impact of a combined fungal and imaging biomarker approach compared with a validated prediction model (Mayo) to rule out benign disease and diagnose lung cancer. METHODS: Adults ages 40 to 90 years with 6-30 mm IPNs were included from four sites. Serum samples were tested for histoplasmosis IgG and IgM antibodies by enzyme immunoassay and a CT-based risk score was estimated from a validated radiomic model. Multivariable logistic regression models including Mayo score, radiomics score, and IgG and IgM histoplasmosis antibody levels were estimated. The areas under the ROC curves (AUC) of the models were compared among themselves and to Mayo. Bias-corrected clinical net reclassification index (cNRI) was estimated to assess clinical reclassification using a combined biomarker model. RESULTS: We included 327 patients; 157 from histoplasmosis-endemic regions. The combined biomarker model including radiomics, histoplasmosis serology, and Mayo score demonstrated improved diagnostic accuracy when endemic histoplasmosis was accounted for [AUC, 0.84; 95% confidence interval (CI), 0.79-0.88; P < 0.0001 compared with 0.73; 95% CI, 0.67-0.78 for Mayo]. The combined model demonstrated improved reclassification with cNRI of 0.18 among malignant nodules. CONCLUSIONS: Fungal and imaging biomarkers may improve diagnostic accuracy and meaningfully reclassify IPNs. The endemic prevalence of histoplasmosis and cancer impact model performance when using disease related biomarkers. IMPACT: Integrating a combined biomarker approach into the diagnostic algorithm of IPNs could decrease time to diagnosis.


Asunto(s)
Histoplasmosis , Neoplasias Pulmonares , Adulto , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Tomografía Computarizada por Rayos X/métodos , Neoplasias Pulmonares/patología , Inmunoglobulina M , Inmunoglobulina G
19.
Med Image Comput Comput Assist Interv ; 14221: 649-659, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38779102

RESUMEN

The accuracy of predictive models for solitary pulmonary nodule (SPN) diagnosis can be greatly increased by incorporating repeat imaging and medical context, such as electronic health records (EHRs). However, clinically routine modalities such as imaging and diagnostic codes can be asynchronous and irregularly sampled over different time scales which are obstacles to longitudinal multimodal learning. In this work, we propose a transformer-based multimodal strategy to integrate repeat imaging with longitudinal clinical signatures from routinely collected EHRs for SPN classification. We perform unsupervised disentanglement of latent clinical signatures and leverage time-distance scaled self-attention to jointly learn from clinical signatures expressions and chest computed tomography (CT) scans. Our classifier is pretrained on 2,668 scans from a public dataset and 1,149 subjects with longitudinal chest CTs, billing codes, medications, and laboratory tests from EHRs of our home institution. Evaluation on 227 subjects with challenging SPNs revealed a significant AUC improvement over a longitudinal multimodal baseline (0.824 vs 0.752 AUC), as well as improvements over a single cross-section multimodal scenario (0.809 AUC) and a longitudinal imaging-only scenario (0.741 AUC). This work demonstrates significant advantages with a novel approach for co-learning longitudinal imaging and non-imaging phenotypes with transformers. Code available at https://github.com/MASILab/lmsignatures.

20.
Photodiagnosis Photodyn Ther ; 40: 103190, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36336323

RESUMEN

BACKGROUND: Photodynamic therapy (PDT) is an effective method for treating actinic keratosis (AK) with pain during illumination representing the major side effect. The efficacy of two different cooling methods for pain relief in PDT of AK in the head region was compared. METHODS: Randomized, assessor-blinded, half side comparison study in 20 patients with symmetrically distributed AK on the head. Conventional PDT was performed on both halves of the scalp or face by applying 20% aminolevulinic acid cream (ALA) and subsequent illumination with incoherent red light. During illumination one side was cooled with a cold air blower (CAB) and the other with a standard fan (FAN) in a randomized fashion. Pain and skin temperature were recorded during and after PDT. The phototoxic skin reaction was evaluated up to seven days after PDT. The clearance rate of AK was assessed at 3 and 6 months after PDT. RESULTS: Mean pain (VASmean), maximum pain intensity (VASmax) and the mean skin temperature during PDT were significantly lower with CAB as compared to FAN (VASmean: 2.7 ± 1.4 vs. 3.7 ± 2.1, p = 0.003; VASmax: 3.8 ± 2.0 vs. 4.8 ± 2.5, p = 0.002; 26.8 ± 2.0 °C vs. 32.1 ± 1.7 °C; p=<0.001). The severity of the phototoxic skin reaction and the clearance rate of AK did not differ between the two cooling methods. CONCLUSION: Cooling with CAB during PDT has a greater analgesic effect than cooling with FAN. Patients with a lower skin temperature during illumination tended to experience less pain, however, this effect did not reach the level of statistical significance.


Asunto(s)
Queratosis Actínica , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/efectos adversos , Queratosis Actínica/tratamiento farmacológico , Ácido Aminolevulínico/efectos adversos , Dolor/etiología , Dolor/inducido químicamente , Cuero Cabelludo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...