Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mitochondrion ; 65: 23-32, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504559

RESUMEN

Large-conductance calcium-regulated potassium channel (BKCa) is known to play an important role in physiological and pathological processes. Despite the BKCa channel being encoded by one gene, this channel has been found to be located not only in the cell membrane but also in the membranes of intracellular compartments, such as in the inner mitochondrial membrane. With some differences, the mitochondrial BKCa (mitoBKCa) channel has been shown to be activated or inhibited by both synthetic and natural compounds. One of them, paxilline, has been considered to be a canonical blocker of this channel. In the previous study, we showed that the natural origin substance quercetin activates the mitoBKCa channel at ten times lower the concentration compared to channel present in the plasma membrane. Here, using the patch-clamp technique, we report that after inhibition of mitoBKCa channels by paxilline, quercetin activates these channels, indicating a paxilline and quercetin binding competition in the regulation of the mitoBKCa channel. To support our hypothesis, we used an analog of quercetin - isorhamnetin, a substance with one substituent changed. Isorhamnetin has no effect on the mitoBKCa channel activity, and after its application, paxilline fully inhibits the channel. Additionally, the molecular modeling studies were used. The results of docking quercetin and paxilline to the BKCa channel suggest that paxilline cannot bind after activation of the channel with quercetin. It seems that the likely mechanism of this phenomenon is the formation of spatial hindrance by quercetin. The results obtained shed a completely new, groundbreaking in the paxilline context, light on the current knowledge about mitochondrial potassium channel regulation.


Asunto(s)
Flavonoides , Quercetina , Flavonoides/metabolismo , Indoles , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Canales de Potasio/farmacología , Quercetina/metabolismo , Quercetina/farmacología
2.
Biomed Pharmacother ; 142: 112039, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34392086

RESUMEN

Mitochondrial potassium channels have been implicated in cytoprotective mechanisms. Activation of the mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channel is important for protecting brain tissue against stroke damage as well as heart tissue against ischemia damage. In this paper, we examine the effect of the natural flavonoid quercetin as an activator of the mitoBKCa channel. Quercetin has a beneficial effect on many processes in the human body and interacts with many receptors and signaling pathways. We found that quercetin acts on mitochondria as a mitoBKCa channel opener. The activation observed with the patch-clamp technique was potent and increased the channel open probability from approximately 0.35 to 0.95 at + 40 mV in the micromolar concentration range. Moreover, quercetin at a concentration of 10 µM protected cells by reducing damage from treatment factors (tumor necrosis factor α and cycloheximide) by 40%, enhancing cellular migration and depolarizing the mitochondrial membrane. Moreover, the presence of quercetin increased the gene expression and protein level of the mitoBKCa ß3 regulatory subunit. The observed cytoprotective effects suggested the involvement of BKCa channel activation. Additionally, the newly discovered mitoBKCa activator quercetin elucidates a new mitochondrial pathway that is beneficial for vascular endothelial cells.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Canales de Potasio de Gran Conductancia Activados por el Calcio/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Quercetina/farmacología , Línea Celular , Células Endoteliales/metabolismo , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Técnicas de Placa-Clamp
3.
Exp Dermatol ; 28(5): 543-550, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30776180

RESUMEN

Flavonoids belong to a large group of polyphenolic compounds that are widely present in plants. Certain flavonoids, including naringenin, have cytoprotective properties. Although the antioxidant effect has long been thought to be a crucial factor accounting for the cellular effects of flavonoids, mitochondrial channels have emerged recently as targets for cytoprotective strategies. In the present study, we characterized interactions between naringenin and the mitochondrial potassium (mitoBKCa and mitoKATP ) channels recently described in dermal fibroblasts. With the use of the patch-clamp technique and mitoplasts isolated from primary human dermal fibroblast cells, our study shows that naringenin in micromolar concentrations leads to an increase in mitoBKCa channel activity. The opening probability of the channel decreased from 0.97 in the control conditions (200 µmol/L Ca2+ ) to 0.06 at a low Ca2+ level (1 µmol/L) and increased to 0.85 after the application of 10 µmol/L naringenin. Additionally, the activity of the mitoKATP channel increased following the application of 10 µmol/L naringenin. To investigate the effects of naringenin on mitochondrial function, the oxygen consumption of dermal fibroblast cells was measured in potassium-containing media. The addition of naringenin significantly and dose-dependently increased the respiratory rate from 5.8 ± 0.2 to 14.0 ± 0.6 nmol O2  × min-1  × mg protein-1 . Additionally, a Raman spectroscopy analysis of skin penetration indicated that the naringenin was distributed in all skin layers, including the epidermis and dermis. In this study, we demonstrated that a flavonoid, naringenin, can activate two potassium channels present in the inner mitochondrial membrane of dermal fibroblasts.


Asunto(s)
Fibroblastos/efectos de los fármacos , Flavanonas/farmacología , Canales de Potasio/metabolismo , Piel/efectos de los fármacos , Adulto , Antioxidantes/metabolismo , Mama/metabolismo , Calcio/metabolismo , Células Cultivadas , Dermis/metabolismo , Diazóxido/farmacología , Femenino , Fibroblastos/citología , Humanos , Mitocondrias/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno , Técnicas de Placa-Clamp , Piel/citología , Espectrometría Raman
4.
Postepy Biochem ; 64(3): 196-212, 2018 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-30656905

RESUMEN

Mitochondria play a fundamental role in ATP synthesis within the majority of mammalian cells. Potassium channels present in the inner mitochondrial membrane are fine regulators of mitochondrial function, based on inner membrane K+ permeability. These channels are regulated by a plethora of factors and conditions in a way similar to plasma membrane potassium channels. Regulators of mitochondrial potassium channels include the membrane potential, calcium ions, free fatty acids and ATP levels within the cells. Recently, it was shown that these channels are regulated by the respiratory chain, stretching of the membrane and phosphorylation. The essential interest that has driven studies of mitochondrial potassium channels for nearly 25 years is their role in cytoprotection and in cell death. Mitochondrial potassium channels have been described in neurons, astrocytoma, cardiac and skeletal muscles, fibroblasts, keratinocytes and endothelial cells. In this overview, we summarize the current knowledge of mitochondrial potassium channels. This summary will be done with a special focus on studies performed over the last 20 years in the Laboratory of Intracellular Ion Channels at the Nencki Institute. These include studies on the electrophysiological and pharmacological properties of mitochondrial potassium channels and on their regulation by endogenous intracellular substances. Additionally, the regulation of mitochondrial potassium channels by the respiratory chain and by stretching of the inner mitochondrial membrane will be reviewed. Properties of mitochondrial potassium channels in various organisms will also be summarized.


Asunto(s)
Mitocondrias/metabolismo , Canales de Potasio/metabolismo , Animales , Transporte de Electrón , Membranas Intracelulares/metabolismo , Canales de Potasio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...