Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Plant Biol ; 22(1): 508, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316635

RESUMEN

BACKGROUND: Cytoplasmic male sterility (CMS) is a maternally inherited failure to produce functional pollen that most commonly results from expression of novel, chimeric mitochondrial genes. In Zea mays, cytoplasmic male sterility type S (CMS-S) is characterized by the collapse of immature, bi-cellular pollen. Molecular and cellular features of developing CMS-S and normal (N) cytoplasm pollen were compared to determine the role of mitochondria in these differing developmental fates. RESULTS: Terminal deoxynucleotidyl transferase dUTP nick end labeling revealed both chromatin and nuclear fragmentation in the collapsed CMS-S pollen, demonstrating a programmed cell death (PCD) event sharing morphological features with mitochondria-signaled apoptosis in animals. Maize plants expressing mitochondria-targeted green fluorescent protein (GFP) demonstrated dynamic changes in mitochondrial morphology and association with actin filaments through the course of N-cytoplasm pollen development, whereas mitochondrial targeting of GFP was lost and actin filaments were disorganized in developing CMS-S pollen. Immunoblotting revealed significant developmental regulation of mitochondrial biogenesis in both CMS-S and N mito-types. Nuclear and mitochondrial genome encoded components of the cytochrome respiratory pathway and ATP synthase were of low abundance at the microspore stage, but microspores accumulated abundant nuclear-encoded alternative oxidase (AOX). Cytochrome pathway and ATP synthase components accumulated whereas AOX levels declined during the maturation of N bi-cellular pollen. Increased abundance of cytochrome pathway components and declining AOX also characterized collapsed CMS-S pollen. The accumulation and robust RNA editing of mitochondrial transcripts implicated translational or post-translational control for the developmentally regulated accumulation of mitochondria-encoded proteins in both mito-types. CONCLUSIONS: CMS-S pollen collapse is a PCD event coincident with developmentally programmed mitochondrial events including the accumulation of mitochondrial respiratory proteins and declining protection against mitochondrial generation of reactive oxygen species.


Asunto(s)
Biogénesis de Organelos , Zea mays , Zea mays/genética , Zea mays/metabolismo , Polen/metabolismo , Apoptosis/genética , Citocromos/metabolismo , Adenosina Trifosfato , Infertilidad Vegetal/genética
2.
G3 (Bethesda) ; 8(1): 291-302, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29167273

RESUMEN

Mitochondria execute key pathways of central metabolism and serve as cellular sensing and signaling entities, functions that depend upon interactions between mitochondrial and nuclear genetic systems. This is exemplified in cytoplasmic male sterility type S (CMS-S) of Zea mays, where novel mitochondrial open reading frames are associated with a pollen collapse phenotype, but nuclear restorer-of-fertility (restorer) mutations rescue pollen function. To better understand these genetic interactions, we screened Activator-Dissociation (Ac-Ds), Enhancer/Suppressor-mutator (En/Spm), and Mutator (Mu) transposon-active CMS-S stocks to recover new restorer mutants. The frequency of restorer mutations increased in transposon-active stocks compared to transposon-inactive stocks, but most mutants recovered from Ac-Ds and En/Spm stocks were unstable, reverting upon backcrossing to CMS-S inbred lines. However, 10 independent restorer mutations recovered from CMS-S Mu transposon stocks were stable upon backcrossing. Many restorer mutations condition seed-lethal phenotypes that provide a convenient test for allelism. Eight such mutants recovered in this study included one pair of allelic mutations that were also allelic to the previously described rfl2-1 mutant. Targeted analysis of mitochondrial proteins by immunoblot identified two features that consistently distinguished restored CMS-S pollen from comparably staged, normal-cytoplasm, nonmutant pollen: increased abundance of nuclear-encoded alternative oxidase relative to mitochondria-encoded cytochrome oxidase and decreased abundance of mitochondria-encoded ATP synthase subunit 1 compared to nuclear-encoded ATP synthase subunit 2. CMS-S restorer mutants thus revealed a metabolic plasticity in maize pollen, and further study of these mutants will provide new insights into mitochondrial functions that are critical to pollen and seed development.


Asunto(s)
Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Mutación , Infertilidad Vegetal/genética , Semillas/genética , Zea mays/genética , Núcleo Celular/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Células Vegetales/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/metabolismo , Polinización/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
3.
J Hered ; 99(2): 85-93, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18216028

RESUMEN

Centromere positions on 7 maize chromosomes were compared on the basis of data from 4 to 6 mapping techniques per chromosome. Centromere positions were first located relative to molecular markers by means of radiation hybrid lines and centric fission lines recovered from oat-maize chromosome addition lines. These centromere positions were then compared with new data from centric fission lines recovered from maize plants, half-tetrad mapping, and fluorescence in situ hybridizations and to data from earlier studies. Surprisingly, the choice of mapping technique was not the critical determining factor. Instead, on 4 chromosomes, results from all techniques were consistent with a single centromere position. On chromosomes 1, 3, and 6, centromere positions were not consistent even in studies using the same technique. The conflicting centromere map positions on chromosomes 1, 3, and 6 could be explained by pericentric inversions or alternative centromere positions on these chromosomes.


Asunto(s)
Centrómero/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Zea mays/genética , Hibridación Fluorescente in Situ
4.
Funct Plant Biol ; 35(7): 585-594, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32688814

RESUMEN

A normalised cDNA library was constructed from Bermudagrass to gain insight into the transcriptome of Cynodon dactylon L. A total of 15 588 high-quality expressed sequence tags (ESTs) from the cDNA library were subjected to The Institute for Genomic Research Gene Indices clustering tools to produce a unigene set. A total of 9414 unigenes were obtained from the high-quality ESTs and only 39.6% of the high-quality ESTs were redundant, indicating that the normalisation procedure was effective. A large-scale comparative genomic analysis of the unigenes was carried out using publicly available tools, such as BLAST, InterProScan and Gene Ontology. The unigenes were also subjected to a search for EST-derived simple sequence repeats (EST-SSRs) and conserved-intron scanning primers (CISPs), which are useful as DNA markers. Although the candidate EST-SSRs and CISPs found in the present study need to be empirically tested, they are expected to be useful as DNA markers for many purposes, including comparative genomic studies of grass species, by virtue of their significant similarities to EST sequences from other grasses. Thus, knowledge of Cynodon ESTs will empower turfgrass research by providing homologues for genes that are thought to confer important functions in other plants.

5.
Plant Physiol ; 142(3): 1148-59, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16998090

RESUMEN

Rhizomes are organs of fundamental importance to plant competitiveness and invasiveness. We have identified genes expressed at substantially higher levels in rhizomes than other plant parts, and explored their functional categorization, genomic organization, regulatory motifs, and association with quantitative trait loci (QTLs) conferring rhizomatousness. The finding that genes with rhizome-enriched expression are distributed across a wide range of functional categories suggests some degree of specialization of individual members of many gene families in rhizomatous plants. A disproportionate share of genes with rhizome-enriched expression was implicated in secondary and hormone metabolism, and abiotic stimuli and development. A high frequency of unknown-function genes reflects our still limited knowledge of this plant organ. A putative oligosaccharyl transferase showed the highest degree of rhizome-specific expression, with several transcriptional or regulatory protein complex factors also showing high (but lesser) degrees of specificity. Inferred by the upstream sequences of their putative rice (Oryza sativa) homologs, sorghum (Sorghum bicolor) genes that were relatively highly expressed in rhizome tip tissues were enriched for cis-element motifs, including the pyrimidine box, TATCCA box, and CAREs box, implicating the gibberellins in regulation of many rhizome-specific genes. From cDNA clones showing rhizome-enriched expression, expressed sequence tags forming 455 contigs were plotted on the rice genome and aligned to QTL likelihood intervals for ratooning and rhizomatous traits in rice and sorghum. Highly expressed rhizome genes were somewhat enriched in QTL likelihood intervals for rhizomatousness or ratooning, with specific candidates including some of the most rhizome-specific genes. Some rhizomatousness and ratooning QTLs were shown to be potentially related to one another as a result of ancient duplication, suggesting long-term functional conservation of the underlying genes. Insight into genes and pathways that influence rhizome growth set the stage for genetic and/or exogenous manipulation of rhizomatousness, and for further dissection of the molecular evolution of rhizomatousness.


Asunto(s)
Genoma de Planta/genética , Sitios de Carácter Cuantitativo/genética , Elementos Reguladores de la Transcripción/genética , Rizoma/metabolismo , Sorghum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Datos de Secuencia Molecular
6.
Genetics ; 165(2): 771-9, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14573487

RESUMEN

Mitochondrial biogenesis and function depend upon the interaction of mitochondrial and nuclear genomes. Forward genetic analysis of mitochondrial function presents a challenge in organisms that are obligated to respire. In the S-cytoplasmic male sterility (CMS-S) system of maize, expression of mitochondrial open reading frames (orf355-orf77) conditions collapse of developing haploid pollen. Nuclear restorer-of-fertility mutations that circumvent pollen collapse are often homozygous lethal. These spontaneous mutations potentially result from disruption of nuclear genes required for mitochondrial gene expression, in contrast to homozygous-viable restorer-of-fertility alleles that function to block or compensate for the expression of mitochondrial CMS genes. Consistent with this hypothesis, the homozygous-lethal restoring allele historically designated RfIII was shown to be recessive in diploid pollen produced by tetraploid CMS-S plants. Accordingly, the symbol for this allele has been changed to restorer-of-fertility lethal 1 (rfl1). In haploid rfl1 pollen, orf355-orf77 transcripts and mitochondrial transcripts encoding the alpha-subunit of the ATP synthase (ATPA) were decreased in abundance. Haploid rfl1 pollen failed to accumulate wild-type levels of ATPA protein, indicating that functional requirements for mitochondrial protein accumulation are relaxed in maize pollen. The CMS-S system and rfl mutations therefore allow for the selection of nuclear mutations disrupting mitochondrial biogenesis in a multicellular eukaryote.


Asunto(s)
Infertilidad/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Polen/genética , Zea mays/genética , Alelos , Infertilidad/metabolismo , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/metabolismo , Polen/metabolismo , Polimorfismo de Longitud del Fragmento de Restricción , Proteínas/metabolismo , ARN/metabolismo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...