Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Robot ; 8(77): eade9676, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37099636

RESUMEN

The gut-brain axis, which is mediated via enteric and central neurohormonal signaling, is known to regulate a broad set of physiological functions from feeding to emotional behavior. Various pharmaceuticals and surgical interventions, such as motility agents and bariatric surgery, are used to modulate this axis. Such approaches, however, are associated with off-target effects or post-procedure recovery time and expose patients to substantial risks. Electrical stimulation has also been used to attempt to modulate the gut-brain axis with greater spatial and temporal resolution. Electrical stimulation of the gastrointestinal (GI) tract, however, has generally required invasive intervention for electrode placement on serosal tissue. Stimulating mucosal tissue remains challenging because of the presence of gastric and intestinal fluid, which can influence the effectiveness of local luminal stimulation. Here, we report the development of a bioinspired ingestible fluid-wicking capsule for active stimulation and hormone modulation (FLASH) capable of rapidly wicking fluid and locally stimulating mucosal tissue, resulting in systemic modulation of an orexigenic GI hormone. Drawing inspiration from Moloch horridus, the "thorny devil" lizard with water-wicking skin, we developed a capsule surface capable of displacing fluid. We characterized the stimulation parameters for modulation of various GI hormones in a porcine model and applied these parameters to an ingestible capsule system. FLASH can be orally administered to modulate GI hormones and is safely excreted with no adverse effects in porcine models. We anticipate that this device could be used to treat metabolic, GI, and neuropsychiatric disorders noninvasively with minimal off-target effects.


Asunto(s)
Hambre , Robótica , Animales , Porcinos , Hormonas
3.
Nature ; 613(7943): 298-302, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36631652

RESUMEN

Bed load sediment transport, in which wind or water flowing over a bed of sediment causes grains to roll or hop along the bed, is a critically important mechanism in contexts ranging from river restoration1 to planetary exploration2. Despite its widespread occurrence, predictions of bed load sediment flux are notoriously imprecise3,4. Many studies have focused on grain size variability5 as a source of uncertainty, but few have investigated the role of grain shape, even though shape has long been suspected to influence transport rates6. Here we show that grain shape can modify bed load transport rates by an amount comparable to the scatter in many sediment transport datasets4,7,8. We develop a theory that accounts for grain shape effects on fluid drag and granular friction and predicts that the onset and efficiency of transport depend on the coefficients of drag and bulk friction of the transported grains. Laboratory experiments confirm these predictions and reveal that the effect of grain shape on sediment transport can be difficult to intuit from the appearance of grains. We propose a shape-corrected sediment transport law that collapses our experimental measurements. Our results enable greater accuracy in predictions of sediment transport and help reconcile theories developed for spherical particles with the behaviour of natural sediment grains.

4.
Proc Natl Acad Sci U S A ; 120(4): e2214017120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36649408

RESUMEN

Soft materials often display complex behaviors that transition through apparent solid- and fluid-like regimes. While a growing number of microscale simulation methods exist for these materials, reduced-order models that encapsulate the macroscale physics are often desired to predict how external bodies interact with soft media. Such an approach could provide direct insights in diverse situations from impact and penetration problems to locomotion over natural terrains. This work proposes a systematic program to develop three-dimensional (3D) reduced-order models for soft materials from a fundamental basis using continuum symmetries and rheological principles. In particular, we derive a reduced-order, 3D resistive force theory (3D-RFT), which is capable of accurately and quickly predicting the resistive stress distribution on arbitrary-shaped bodies intruding through granular media. Aided by a continuum description of the granular medium, a comprehensive set of spatial symmetry constraints, and a limited amount of reference data, we develop a self-consistent and accurate 3D-RFT. We verify the model capabilities in a wide range of cases and show that it can be quickly recalibrated to different media and intruder surface types. The premises leading to 3D-RFT anticipate application to other soft materials with strongly hyperlocalized intrusion behavior.


Asunto(s)
Locomoción , Fenómenos Mecánicos , Reología
5.
Soft Matter ; 17(30): 7196-7209, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34269368

RESUMEN

Granular intrusion is commonly observed in natural and human-made settings. Unlike typical solids and fluids, granular media can simultaneously display fluid-like and solid-like characteristics in a variety of intrusion scenarios. This multi-phase behavior increases the difficulty of accurately modeling these and other yielding (or flowable) materials. Micro-scale modeling methods, such as DEM (Discrete Element Method), capture this behavior by modeling the media at the grain scale, but there is often interest in the macro-scale characterizations of such systems. We examine the efficacy of a macro-scale continuum approach in modeling and understanding the physics of various macroscopic phenomena in a variety of granular intrusion cases using two basic frictional yielding constitutive models. We compare predicted granular force response and material flow to experimental data in four quasi-2D intrusion cases: (1) depth-dependent force response in horizontal submerged-intruder motion; (2) separation-dependent drag variation in parallel-plate vertical-intrusion; (3) initial-density-dependent drag fluctuations in free surface plowing, and (4) flow zone development during vertical plate intrusions in under-compacted granular media. Our continuum modeling approach captures the flow process and drag forces while providing key meso- and macro-scopic insights. The modeling results are then compared to experimental data. Our study highlights how continuum modeling approaches provide an alternative for efficient modeling as well as a conceptual understanding of various granular intrusion phenomena.

6.
Soft Matter ; 17(31): 7359-7375, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34297021

RESUMEN

The jamming transition in granular materials is well-known for exhibiting hysteresis, wherein the level of shear stress required to trigger flow is larger than that below which flow stops. Although such behavior is typically modeled as a simple non-monotonic flow rule, the rheology of granular materials is also nonlocal due to cooperativity at the grain scale, leading for instance to increased strengthening of the flow threshold as system size is reduced. We investigate how these two effects - hysteresis and nonlocality - couple with each other by incorporating non-monotonicity of the flow rule into the nonlocal granular fluidity (NGF) model, a nonlocal constitutive model for granular flows. By artificially tuning the strength of nonlocal diffusion, we demonstrate that both ingredients are key to explaining certain features of the hysteretic transition between flow and arrest. Finally, we assess the ability of the NGF model to quantitatively predict material behavior both around the transition and in the flowing regime, through stress-driven discrete element method (DEM) simulations of flow onset and arrest in various geometries. Along the way, we develop a new methodology to compare deterministic model predictions with the stochastic behavior exhibited by the DEM simulations around the jamming transition.

7.
Sci Adv ; 7(17)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33893099

RESUMEN

Granular intrusions, such as dynamic impact or wheel locomotion, are complex multiphase phenomena where the grains exhibit solid-like and fluid-like characteristics together with an ejected gas-like phase. Despite decades of modeling efforts, a unified description of the physics in such intrusions is as yet unknown. Here, we show that a continuum model based on the simple notions of frictional flow and tension-free separation describes complex granular intrusions near free surfaces. This model captures dynamics in a variety of experiments including wheel locomotion, plate intrusions, and running legged robots. The model reveals that one static and two dynamic effects primarily give rise to intrusion forces in such scenarios. We merge these effects into a further reduced-order technique (dynamic resistive force theory) for rapid modeling of granular locomotion of arbitrarily shaped intruders. The continuum-motivated strategy we propose for identifying physical mechanisms and corresponding reduced-order relations has potential use for a variety of other materials.

8.
Phys Rev Lett ; 125(8): 088002, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32909790

RESUMEN

Based on discrete element method simulations, we propose a new form of the constitutive equation for granular flows independent of packing fraction. Rescaling the stress ratio µ by a power of dimensionless temperature Θ makes the data from a wide set of flow geometries collapse to a master curve depending only on the inertial number I. The basic power-law structure appears robust to varying particle properties (e.g., surface friction) in both 2D and 3D systems. We show how this rheology fits and extends frameworks such as kinetic theory and the nonlocal granular fluidity model.

9.
Elife ; 92020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32578532

RESUMEN

While terrestrial locomotors often contend with permanently deformable substrates like sand, soil, and mud, principles of motion on such materials are lacking. We study the desert-specialist shovel-nosed snake traversing a model sand and find body inertia is negligible despite rapid transit and speed dependent granular reaction forces. New surface resistive force theory (RFT) calculation reveals how wave shape in these snakes minimizes material memory effects and optimizes escape performance given physiological power limitations. RFT explains the morphology and waveform-dependent performance of a diversity of non-sand-specialist snakes but overestimates the capability of those snakes which suffer high lateral slipping of the body. Robophysical experiments recapitulate aspects of these failure-prone snakes and elucidate how re-encountering previously deformed material hinders performance. This study reveals how memory effects stymied the locomotion of a diversity of snakes in our previous studies (Marvi et al., 2014) and indicates avenues to improve all-terrain robots.


Asunto(s)
Locomoción/fisiología , Memoria/fisiología , Actividad Motora/fisiología , Serpientes/fisiología , Animales , Fenómenos Biomecánicos
10.
Proc Natl Acad Sci U S A ; 116(42): 20828-20836, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31562198

RESUMEN

Fine-particle suspensions (such as cornstarch mixed with water) exhibit dramatic changes in viscosity when sheared, producing fascinating behaviors that captivate children and rheologists alike. Examination of these mixtures in simple flow geometries suggests intergranular repulsion and its influence on the frictional nature of granular contacts is central to this effect-for mixtures at rest or shearing slowly, repulsion prevents frictional contacts from forming between particles, whereas when sheared more forcefully, granular stresses overcome the repulsion allowing particles to interact frictionally and form microscopic structures that resist flow. Previous constitutive studies of these mixtures have focused on particular cases, typically limited to 2D, steady, simple shearing flows. In this work, we introduce a predictive and general, 3D continuum model for this material, using mixture theory to couple the fluid and particle phases. Playing a central role in the model, we introduce a microstructural state variable, whose evolution is deduced from small-scale physical arguments and checked with existing data. Our space- and time-dependent model is implemented numerically in a variety of unsteady, nonuniform flow configurations where it is shown to accurately capture a variety of key behaviors: 1) the continuous shear-thickening (CST) and discontinuous shear-thickening (DST) behavior observed in steady flows, 2) the time-dependent propagation of "shear jamming fronts," 3) the time-dependent propagation of "impact-activated jamming fronts," and 4) the non-Newtonian, "running on oobleck" effect, wherein fast locomotors stay afloat while slow ones sink.

11.
Proc Math Phys Eng Sci ; 475(2226): 20190144, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31293362

RESUMEN

Generalizing Maxwell's (Maxwell 1867 IV. Phil. Trans. R. Soc. Lond. 157, 49-88 (doi:10.1098/rstl.1867.0004)) classical formula, this paper shows how the dissipation potentials for a dissipative system can be derived from the elastic potential of an elastic system undergoing continual failure and recovery. Hence, stored elastic energy gives way to dissipated elastic energy. This continuum-level response is attributed broadly to dissipative microscopic transitions over a multi-well potential energy landscape of a type studied in several previous works, dating from Prandtl's (Prandtl 1928 Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM 8, 85-106) model of plasticity. Such transitions are assumed to take place on a characteristic time scale T, with a nonlinear viscous response that becomes a plastic response for T → 0 . We consider both discrete mechanical systems and their continuum mechanical analogues, showing how the Reiner-Rivlin fluid arises from nonlinear isotropic elasticity. A brief discussion is given in the conclusions of the possible extensions to other dissipative processes.

12.
Phys Rev E ; 95(6-2): 069902, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28709253

RESUMEN

This corrects the article DOI: 10.1103/PhysRevE.95.052901.

13.
Phys Rev E ; 95(5-1): 052901, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28618587

RESUMEN

Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.

14.
Phys Rev Lett ; 118(5): 058001, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28211739

RESUMEN

A recent granular rheology based on an implicit "granular fluidity" field has been shown to quantitatively predict many nonlocal phenomena. However, the physical nature of the field has not been identified. Here, the granular fluidity is found to be a kinematic variable given by the velocity fluctuation and packing fraction. This is verified with many discrete element simulations, which show that the operational fluidity definition, solutions of the fluidity model, and the proposed microscopic formula all agree. Kinetic theoretical and Eyring-like explanations shed insight into the obtained form.

15.
Nat Mater ; 16(1): 8-9, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27994248
16.
Soft Matter ; 12(36): 7688-97, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27532243

RESUMEN

We propose a model for the evolution of the conductivity tensor for a flowing suspension of electrically conductive particles. We use discrete particle numerical simulations together with a continuum physical framework to construct an evolution law for the suspension microstructure during flow. This model is then coupled with a relationship between the microstructure and the electrical conductivity tensor. Certain parameters of the joint model are fit experimentally using rheo-electrical conductivity measurements of carbon black suspensions under flow over a range of shear rates. The model is applied to the case of steady shearing as well as time-varying conductivity of unsteady flow experiments. We find that the model prediction agrees closely with the measured experimental data in all cases.

17.
Nat Mater ; 15(12): 1274-1279, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27571454

RESUMEN

The interaction of intruding objects with deformable materials arises in many contexts, including locomotion in fluids and loose media, impact and penetration problems, and geospace applications. Despite the complex constitutive behaviour of granular media, forces on arbitrarily shaped granular intruders are observed to obey surprisingly simple, yet empirical 'resistive force hypotheses'. The physics of this macroscale reduction, and how it might play out in other media, has however remained elusive. Here, we show that all resistive force hypotheses in grains arise from local frictional yielding, revealing a novel invariance within a class of plasticity models. This mechanical foundation, supported by numerical and experimental validations, leads to a general analytical criterion to determine which rheologies can obey resistive force hypotheses. We use it to explain why viscous fluids are observed to perform worse than grains, and to predict a new family of resistive-force-obeying materials: cohesive media such as pastes, gels and muds.

18.
ACS Nano ; 10(7): 6552-62, 2016 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-27347793

RESUMEN

The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2.

19.
Soft Matter ; 11(40): 7995-8012, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26330342

RESUMEN

The problem of predicting the growth of a system of cracks, each crack influencing the growth of the others, arises in multiple fields. We develop an analytical framework toward this aim, which we apply to the 'En-Passant' family of crack growth problems, in which a pair of initially parallel, offset cracks propagate nontrivially toward each other under far-field opening stress. We utilize boundary integral and perturbation methods of linear elasticity, linear elastic fracture mechanics, and common crack opening criteria to calculate the first analytical model for curved En-Passant crack paths. The integral system is reduced under a hierarchy of approximations, producing three methods of increasing simplicity for computing crack paths. The last such method is a major highlight of this work, using an asymptotic matching argument to predict crack paths based on superposition of simple, single-crack fields. Within the corresponding limits of the three methods, all three are shown to agree with each other. We provide comparisons to exact results and existing experimental data to verify certain approximation steps.


Asunto(s)
Modelos Teóricos , Fenómenos Biomecánicos , Elasticidad , Modelos Biológicos
20.
Soft Matter ; 11(19): 3875-83, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25866293

RESUMEN

Significant microstructural anisotropy is known to develop during shearing flow of attractive particle suspensions. These suspensions, and their capacity to form conductive networks, play a key role in flow-battery technology, among other applications. Herein, we present and test an analytical model for the tensorial conductivity of attractive particle suspensions. The model utilizes the mean fabric of the network to characterize the structure, and the relationship to the conductivity is inspired by a lattice argument. We test the accuracy of our model against a large number of computer-generated suspension networks, based on multiple in-house generation protocols, giving rise to particle networks that emulate the physical system. The model is shown to adequately capture the tensorial conductivity, both in terms of its invariants and its mean directionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...