Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Pharmaceutica Sinica B ; (6): 2039-2055, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-982846

RESUMEN

Positive-sense RNA viruses modify intracellular calcium stores, endoplasmic reticulum and Golgi apparatus (Golgi) to generate membranous replication organelles known as viral factories. Viral factories provide a conducive and substantial enclave for essential virus replication via concentrating necessary cellular factors and viral proteins in proximity. Here, we identified the vital role of a broad-spectrum antiviral, peruvoside in limiting the formation of viral factories. Mechanistically, we revealed the pleiotropic cellular effect of Src and PLC kinase signaling via cyclin-dependent kinase 1 signaling leads to Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1) phosphorylation and Golgi vesiculation by peruvoside treatment. The ramification of GBF1 phosphorylation fosters GBF1 deprivation consequentially activating downstream antiviral signaling by dampening viral factories formation. Further investigation showed signaling of ERK1/2 pathway via cyclin-dependent kinase 1 activation leading to GBF1 phosphorylation at Threonine 1337 (T1337). We also showed 100% of protection in peruvoside-treated mouse model with a significant reduction in viral titre and without measurable cytotoxicity in serum. These findings highlight the importance of dissecting the broad-spectrum antiviral therapeutics mechanism and pave the way for consideration of peruvoside, host-directed antivirals for positive-sense RNA virus-mediated disease, in the interim where no vaccine is available.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20232835

RESUMEN

The rapid rise of coronavirus disease 2019 patients who suffer from vascular events after their initial recovery is expected to lead to a worldwide shift in disease burden. We aim to investigate the impact of COVID-19 on the pathophysiological state of blood vessels in convalescent patients. Here, convalescent COVID-19 patients with or without preexisting conditions (i.e. hypertension, diabetes, hyperlipidemia) were compared to non-COVID-19 patients with matched cardiovascular risk factors or healthy participants. Convalescent patients had elevated circulating endothelial cells (CECs), and those with underlying cardiovascular risk had more pronounced endothelial activation hallmarks (ICAM1, P-selectin or CX3CL1) expressed by CECs. Multiplex microbead-based immunoassays revealed some levels of cytokine production sustained from acute infection to recovery phase. Several proinflammatory and activated T lymphocyte-associated cytokines correlated positively with CEC measures, implicating cytokine-driven endothelial dysfunction. Finally, the activation markers detected on CECs mapped to the counter receptors (i.e. ITGAL, SELPLG, and CX3CR1) found primarily on CD8+ T cells and natural killer cells, suggesting that activated endothelial cells could be targeted by cytotoxic effector cells. Clinical trials in preventive therapy for post-COVID-19 vascular complications may be needed. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=69 SRC="FIGDIR/small/20232835v1_ufig1.gif" ALT="Figure 1"> View larger version (19K): org.highwire.dtl.DTLVardef@d34a61org.highwire.dtl.DTLVardef@1b82feeorg.highwire.dtl.DTLVardef@152ea88org.highwire.dtl.DTLVardef@a3b382_HPS_FORMAT_FIGEXP M_FIG C_FIG

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA