Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065309

RESUMEN

Additive manufacturing (AM), commonly known as 3D printing, allows for the manufacturing of complex systems that are not possible using traditional manufacturing methods. Nevertheless, some disadvantages are attributed to AM technologies. One of the most often referred to is the defects of the produced components, particularly the porosity. One approach to solving this problem is to consider it as a non-problem, i.e., taking advantage of the defects. Commercially, LAY-FOMM®60 polymer was successfully used in AM through a material extrusion process. This filament is a blend of two polymers, one of them soluble in water, allowing, after its removal from the printed components, the increase in porosity. The defects produced were exploited to evaluate the metallic ion removal capacity of manufactured components using non-potable tap water. Two experimental setups, continuous and ultrasound-assisted methods, were compared, concerning their water cleaning capacity. Results revealed that continuous setup presented the highest metallic ion removal capacity (>80%) for the following three studied metallic ions: iron, copper, and zinc. High water swelling capacity (~80%) and the increase in porosity of 3D-printed parts played a significant role in the ion sorption capacity. The developed strategy could be considered a custom and affordable alternative to designing complex filtration/separation systems for environmental and wastewater treatment applications.

2.
Polymers (Basel) ; 14(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35808575

RESUMEN

This work studied the influence of hydrogel's physical properties (geometry and hierarchical roughness) on the in vitro sorption/release profiles of molecules. To achieve this goal, chitosan (CS) solutions were cast in 3D-printed (3DP) molds presenting intricate shapes (cubic and half-spherical with/without macro surface roughness) and further immersed in alkaline solutions of NaOH and NaCl. The resulting physically crosslinked hydrogels were mechanically stable in aqueous environments and successfully presented the shapes and geometries imparted by the 3DP molds. Sorption and release profiles were evaluated using methyl orange (MO) and paracetamol (PMOL) as model molecules, respectively. Results revealed that distinct MO sorption/PMOL release profiles were obtained according to the sample's shape and presence/absence of hierarchical roughness. MO sorption capacity of CS samples presented both dependencies of hierarchical surface and geometry parameters. Hence, cubic samples without a hierarchical surface presented the highest (up to 1.2 × greater) dye removal capacity. Moreover, PMOL release measurements were more dependent on the surface area of hydrogels, where semi-spherical samples with hierarchical roughness presented the fastest (~1.13 × faster) drug delivery profiles. This work demonstrates that indirect 3DP (via fused filament fabrication (FFF) technology) could be a simple strategy to obtain hydrogels with distinct sorption/release profiles.

3.
Polymers (Basel) ; 13(16)2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34451256

RESUMEN

Electroactive polymers (EAPs), materials that present size/shape alteration in response to an electrical stimulus, are currently being explored regarding advanced smart devices, namely robotics, valves, soft actuators, artificial muscles, and electromechanical sensors. They are generally prepared through conventional techniques (e.g., solvent casting and free-radical polymerization). However, non-conventional processes such as those included in additive manufacturing (AM) are emerging as a novel approach to tune and enhance the electromechanical properties of EAPs to expand the scope of areas for this class of electro-responsive material. This review aims to summarize the published work (from the last five years) in developing EAPs either by conventional or non-conventional polymer processing approaches. The technology behind each processing technique is discussed as well as the main mechanism behind the electromechanical response. The most common polymer-based materials used in the design of current EAPs are reviewed. Therefore, the main conclusions and future trends regarding EAPs obtained by conventional and non-conventional technologies are also given.

4.
Mater Sci Eng C Mater Biol Appl ; 121: 111798, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33579445

RESUMEN

In this work, electro-responsive chitosan/ionic liquid-based hydrogels were synthetized for the first time, envisaging the development of iontophoretic biomaterials for the controlled release/permeation of charged biomolecules. The main goal was to enhance and tune the physicochemical, mechanical, electro-responsive, and haemostatic properties of chitosan-based biomaterials to obtain multi-stimuli responsive (responsive to electrical current, ionic strength, and pH) and mechanically stable hydrogels. To accomplish this objective, polycationic semi-interpenetrating copolymer networks (semi-IPN) were prepared by combining chitosan (CS) and ionic liquid-based polymers and copolymers, namely poly(1-butyl-3-vinylimidazolium chloride) (poly(BVImCl)) and poly(2-hydroxymethyl methacrylate-co-1-butyl-3-vinylimidazolium chloride) (poly(HEMA-co-BVImCl)). Results show that prepared semi-IPNs presented high mechanical stability and were positively charged over a broad pH range, including basic pH. Semi-IPNs also presented faster permeation and release rates of lidocaine hydrochloride (LH), under external electrical stimulus (0.56 mA/cm2) in aqueous media at 32 °C. The kinetic release constants and the LH diffusion coefficients measured under electrical stimulus were ~1.5 and > 2.7 times higher for those measured for passive release. Finally, both semi-IPNs were non-haemolytic (haemolytic index ≤0.2%) and showed strong haemostatic activity (blood clotting index of ~12 ± 1%). Altogether, these results show that the prepared polycationic semi-IPN hydrogels presented advantageous mechanical, responsive and biological properties that enable them to be potentially employed for the design of new, safer, and advanced stimuli-responsive biomaterials for several biomedical applications such as haemostatic and wound healing dressings and iontophoretic patches.


Asunto(s)
Quitosano , Líquidos Iónicos , Vendajes , Materiales Biocompatibles/farmacología , Hidrogeles , Concentración de Iones de Hidrógeno , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA