Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Rep (Amst) ; 23: e00344, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31193735

RESUMEN

This paper describes the isolation of potent extracellular-laccase producing white-rot fungus, identified by 18 s-rRNA as Penicillium-chrysogenum and its medium optimization by central-composite-rotatable-design using RSM. The optimum laccase-activity of 6.0 U ml-1 was obtained and maximum activity of 7.9 U ml-1 was achieved by statistical-optimization of the medium at 32 °C for 5 days. The molecular-weight of the laccase was found to be 67 kDa. UV-visible absorption-spectrum analysis shows peak at 600 nm and 325 nm corresponding to the type-I Cu(II) & type-III binuclear Cu(II) pair respectively confirming presence of laccase. The sharp endothermic peak at 150 °C and three-phases of protein denaturation was observed by DSC and TGA analysis for enzyme protein. The FT-IR analysis of laccase shows band at 1405cm-1, 1656 cm-1 &3400cm-1 corresponding to amide-I band, amide-II band and amino-acid group respectively. Results of the study show the enzyme is capable of carrying-out hydrolytic-cleavage of chemical-pollutants from the industrial waste-water for providing sustainable-greener environment.

2.
Appl Biochem Biotechnol ; 174(6): 2131-52, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25163883

RESUMEN

"Dyeing" is a common practice used to color the hides during the post-tanning operations in leather processing generating plenty of wastewater. The waste stream containing dye as pollutant is severely harmful to living beings. An azo dye (C.I. Acid Blue 113) has been biodegraded effectively by bacterial culture mediated with azoreductase enzyme to reduce the pollution load in the present investigation. The maximum rate of dye degradation was found to be 96 ± 4 and 92 ± 4 % for the initial concentrations of 100 and 200 mg/l, respectively. The enzyme activity was measured using NADH as a substrate. Fourier transform infrared spectroscopy (FT-IR) analysis was confirmed that the transformation of azo linkage could be transformed into N2 or NH3 or incorporated into complete biomass. Breaking down of dye molecules to various metabolites (such as aniline, naphthalene-1,4-diamine, 3-aminobenzenesulfonic acid, naphthalene-1-sulfonic acid, 8-aminonaphthalene-1-sulfonic acid, 5,8-diaminonaphthalene-1-sulfonic acid) was confirmed by gas chromatography and mass spectra (GC-MS) and mass (electrospray ionization (ESI)) spectra analysis. The treated wastewater could be reused for dyeing operation in the leather processing, and the properties of produced leather were evaluated by conventional methods that revealed to have improved dye penetration into the grain layer of experimental leather sample and resulted in high levelness of dyeing, which helps to obtain the desired smoothness and soft leather properties.


Asunto(s)
Compuestos Azo/química , Bacterias/metabolismo , Colorantes/química , Residuos Industriales , Reciclaje , Aguas Residuales/química , Aminas/análisis , Compuestos Azo/metabolismo , Bacterias/enzimología , Bacterias/crecimiento & desarrollo , Biodegradación Ambiental , Colorantes/metabolismo , Técnicas de Cultivo , Modelos Químicos , NADH NADPH Oxidorreductasas/metabolismo , Nitrorreductasas , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...