Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biochem ; 175(4): 418-425, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38140954

RESUMEN

The core M3 O-mannosyl glycan on α-dystroglycan serves as the binding epitope for extracellular matrix molecules. Defects in core M3 glycans cause congenital muscular dystrophies that are collectively known as dystroglycanopathies. The core M3 glycan contains a tandem D-ribitol-5-phosphate (Rbo5P) structure, which is synthesized by the Rbo5P-transferases fukutin and fukutin-related protein using CDP-ribitol (CDP-Rbo) as a donor substrate. CDP-Rbo is synthesized from CTP and Rbo5P by CDP-Rbo pyrophosphorylase A. However, the Rbo5P biosynthesis pathway has yet to be elucidated in mammals. Here, we investigated the reductase activities toward four substrates, including ribose, ribulose, ribose-phosphate and ribulose-phosphate, to identify the intracellular Rbo5P production pathway and elucidated the role of the aldo-keto reductases AKR1A1, AKR1B1 and AKR1C1 in those pathways. It was shown that the ribose reduction pathway is the endogenous pathway that contributes most to Rbo5P production in HEK293T cells and that AKR1B1 is the major reductase in this pathway.


Asunto(s)
Ribitol , Ribosa , Humanos , Animales , Ribitol/metabolismo , Fosfatos , Células HEK293 , Distroglicanos/metabolismo , Oxidorreductasas , Mamíferos , Polisacáridos/metabolismo , Aldehído Reductasa
2.
Sci Rep ; 13(1): 10430, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369727

RESUMEN

Laminins are a family of heterotrimers composed of α-, ß-, and γ-chains in the basement membrane. Five α chains contain laminin globular (LG) domain consisting of five tandem modules (LG1-5 modules) at their C-terminus. Each LG45 modules is connected to a compact cloverleaf-shaped structure of LG1-3 through a flexible linker. Although the accumulated studies of the LG45 modules have suggested differences in each α chain regarding the binding of carbohydrate chain and intramolecular interaction, this remains unclear. In this study, to characterize their functions comparatively, we produced recombinant proteins of LG45 modules of human laminin α1-5 chains. Dystroglycan (DG) modified with matriglycan readily bound to the LG45 modules of α1 and α2 chains but not to the other α chains. In contrast, heparin bound to the LG45 modules of the α chains, except for α2. The binding of heparan sulfate/heparin-linked syndecans (SDCs) to LG45 modules was influenced by their core proteins. Furthermore, the α1 and α4LG45 modules bound to SDCs in a pH-dependent manner. A cell adhesion assay showed that HEK293 cells could readily adhere to the LG45 modules of α3-5 chains through a combination of SDCs and integrins. Moreover, α5LG45 modules bound to the E8 fragment, which includes the C-terminus of the laminin coiled-coil (LCC) domain and LG1-3 modules, but α2LG45 modules did not. The results suggested that although α5LG45 modules was fixed within the LG domain, α2LG45 modules was freely placed in the vicinity of LG1-3. Our findings provide information for investigation of the structural and functional diversity of basement membranes.


Asunto(s)
Heparitina Sulfato , Laminina , Humanos , Laminina/metabolismo , Células HEK293 , Unión Proteica/fisiología , Heparina/metabolismo , Sitios de Unión
3.
Matrix Biol Plus ; 15: 100118, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35990309

RESUMEN

The linkage between the basement membrane (BM) and cytoskeleton is crucial for muscle fiber stability and signal transduction. Mutations in the linkage molecules can cause various types of muscular dystrophies. The different severities and times of onset suggest that compensatory linkages occur at the sarcolemma. Cluster of differentiation 239 (CD239) binds to the α5 subunit of laminin-511 extracellularly and is connected to spectrin intracellularly, resulting in a linkage between the BM and cytoskeleton. In this study, we explored the linkage of laminin α5_CD239_spectrin in skeletal muscles. Although laminin α5, CD239, and spectrin were present in embryonic skeletal muscles, they disappeared in adult skeletal muscle tissues, except for the soleus and diaphragm. Laminin α5_CD239_spectrin was localized in the skeletal muscle tissues of Duchenne muscular dystrophy and congenital muscular dystrophy mouse models. The experimental regeneration of skeletal muscle increased the CD239-mediated linkage, indicating that it responds to regeneration, but not to genetic influence. Furthermore, in silico analysis showed that laminin α5_CD239_spectrin was upregulated by steroid therapy for muscular dystrophy. Therefore, CD239-mediated linkage may serve as a therapeutic target to prevent the progression of muscular dystrophy.

4.
Nat Commun ; 13(1): 1847, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35422047

RESUMEN

Ribitol-phosphate modification is crucial for the functional maturation of α-dystroglycan. Its dysfunction is associated with muscular dystrophy, cardiomyopathy, and central nervous system abnormalities; however, no effective treatments are currently available for diseases caused by ribitol-phosphate defects. In this study, we demonstrate that prodrug treatments can ameliorate muscular dystrophy caused by defects in isoprenoid synthase domain containing (ISPD), which encodes an enzyme that synthesizes CDP-ribitol, a donor substrate for ribitol-phosphate modification. We generated skeletal muscle-selective Ispd conditional knockout mice, leading to a pathogenic reduction in CDP-ribitol levels, abnormal glycosylation of α-dystroglycan, and severe muscular dystrophy. Adeno-associated virus-mediated gene replacement experiments suggested that the recovery of CDP-ribitol levels rescues the ISPD-deficient pathology. As a prodrug treatment strategy, we developed a series of membrane-permeable CDP-ribitol derivatives, among which tetraacetylated CDP-ribitol ameliorated the dystrophic pathology. In addition, the prodrug successfully rescued abnormal α-dystroglycan glycosylation in patient fibroblasts. Consequently, our findings provide proof-of-concept for supplementation therapy with CDP-ribitol and could accelerate the development of therapeutic agents for muscular dystrophy and other diseases caused by glycosylation defects.


Asunto(s)
Distrofias Musculares , Profármacos , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Distroglicanos , Músculo Esquelético , Distrofias Musculares/tratamiento farmacológico , Distrofias Musculares/genética , Fosfatos , Profármacos/farmacología , Profármacos/uso terapéutico , Ribitol/uso terapéutico
5.
Ann Neurol ; 91(3): 317-328, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35064929

RESUMEN

OBJECTIVE: This study aimed to elucidate the molecular features of inclusion body myositis (IBM). METHODS: We performed RNA sequencing analysis of muscle biopsy samples from 67 participants, consisting of 58 myositis patients with the pathological finding of CD8-positive T cells invading non-necrotic muscle fibers expressing major histocompatibility complex class I (43 IBM, 6 polymyositis, and 9 unclassifiable myositis), and 9 controls. RESULTS: Cluster analysis, principal component analysis, and pathway analysis showed that differentially expressed genes and pathways identified in IBM and polymyositis were mostly comparable. However, pathways related to cell adhesion molecules were upregulated in IBM as compared with polymyositis and controls (p < 0.01). Notably, CDH1, which encodes the epidermal cell junction protein cadherin 1, was overexpressed in the muscles of IBM, which was validated by another RNA sequencing dataset from previous publications. Western blotting confirmed the presence of mature cadherin 1 protein in the muscles of IBM. Immunohistochemical staining confirmed the positivity for anti-cadherin 1 antibody in the muscles of IBM, whereas there was no muscle fiber positive for anti-cadherin 1 antibody in immune-mediated necrotizing myopathy, antisynthetase syndrome, and controls. The fibers stained with anti-cadherin 1 antibody did not have rimmed vacuoles or abnormal protein accumulation. Experimental skeletal muscle regeneration and differentiation systems showed that CDH1 is expressed during skeletal muscle regeneration and differentiation. INTERPRETATION: CDH1 was detected as a differentially expressed gene, and immunohistochemistry showed that cadherin 1 exists in the muscles of IBM, whereas it was rarely seen in those of other idiopathic inflammatory myopathies. Cadherin 1 upregulation in muscle could provide a valuable clue to the pathological mechanisms of IBM. ANN NEUROL 2022;91:317-328.


Asunto(s)
Cadherinas/metabolismo , Músculo Esquelético/metabolismo , Miositis por Cuerpos de Inclusión/metabolismo , Transcriptoma , Anciano , Anciano de 80 o más Años , Cadherinas/genética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Miositis por Cuerpos de Inclusión/genética
6.
Int J Mol Sci ; 22(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34884967

RESUMEN

Dystroglycanopathy is a collective term referring to muscular dystrophies with abnormal glycosylation of dystroglycan. At least 18 causative genes of dystroglycanopathy have been identified, and its clinical symptoms are diverse, ranging from severe congenital to adult-onset limb-girdle types. Moreover, some cases are associated with symptoms involving the central nervous system. In the 2010s, the structure of sugar chains involved in the onset of dystroglycanopathy and the functions of its causative gene products began to be identified as if they were filling the missing pieces of a jigsaw puzzle. In parallel with these discoveries, various dystroglycanopathy model mice had been created, which led to the elucidation of its pathological mechanisms. Then, treatment strategies based on the molecular basis of glycosylation began to be proposed after the latter half of the 2010s. This review briefly explains the sugar chain structure of dystroglycan and the functions of the causative gene products of dystroglycanopathy, followed by introducing the pathological mechanisms involved as revealed from analyses of dystroglycanopathy model mice. Finally, potential therapeutic approaches based on the pathological mechanisms involved are discussed.


Asunto(s)
Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Terapia de Reemplazo Enzimático/métodos , Terapia Genética/métodos , Terapia Molecular Dirigida/métodos , Distrofias Musculares/patología , Distrofias Musculares/terapia , Animales , Distroglicanos/genética , Glicosilación , Humanos
7.
Arthritis Rheumatol ; 73(8): 1441-1450, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33586252

RESUMEN

OBJECTIVE: Transient receptor potential vanilloid channel 2 (TRPV2) is a Ca2+ -permeable channel and plays a role in mediating intracellular Ca2+ current via mechanical stimuli. This study was undertaken to examine the expression and role of TRPV2 in adult articular cartilage and the development of osteoarthritis (OA). METHODS: We examined TRPV2 expression in mouse and human articular cartilage. We analyzed the development of OA in Col2a1-CreERt2 ;Trpv2fl/fl mice and Trpv2fl/fl littermates in the resection of the medial meniscus and medial collateral ligament model (n = 5 each), the destabilization of the medial meniscus model (n = 5 each), and the aging mouse model (n = 8-9 each). We examined marker protein expression in these joints, Ca2+ influx by mechanical stimuli, and downstream pathways in vitro. RESULTS: TRPV2 was expressed in mouse and human articular cartilage and ectopic ossification lesions. In all mouse models of OA examined, Col2a1-CreERt2 ;Trpv2fl/fl mice were observed to have enhanced degradation of articular cartilage accompanied by decreased expression of lubricin/Prg4, and marked formation of periarticular ectopic ossification. Mechanical stress-induced Ca2+ influx was decreased by Trpv2 knockout (KO). Prg4 induction by fluid-flow shear stress was diminished in Trpv2-KO mouse chondrocytes, and this was mediated by the Ca2+ /calmodulin-dependent protein kinase kinase-cyclic AMP response element binding protein axis. Hypertrophic differentiation was enhanced in Trpv2-KO mouse chondrocytes. Increased activity of calcineurin and nuclear translocation of nuclear factor in activated T cells 1 induced by fluid-flow shear stress or TRP agonist treatment was reversed by Trpv2 knockout. CONCLUSION: Our findings demonstrate regulation of articular cartilage by TRPV2 through Prg4 induction and suppression of ectopic ossification.


Asunto(s)
Glicoproteínas/metabolismo , Osificación Heterotópica/genética , Osteogénesis/genética , Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Cartílago Articular/metabolismo , Células Cultivadas , Condrocitos/metabolismo , Modelos Animales de Enfermedad , Humanos , Meniscos Tibiales/metabolismo , Ratones , Ratones Noqueados , Osteoartritis/genética , Proteoglicanos/metabolismo
8.
Am J Hypertens ; 34(5): 552-562, 2021 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-33349854

RESUMEN

BACKGROUND: Amyloid-ß (Aß) induces cerebrovascular damage and is reported to stimulate endothelial cell senescence. We previously demonstrated that angiotensin II (Ang II)-promoted vascular senescence. We examined the possible cross-talk between Ang II and Aß in regulating brain vascular smooth muscle cell (BVSMC) senescence. METHODS: BVSMCs were prepared from adult male mice and stimulated with Ang II (0, 0.1, 1, 10, and 100 nmol/l) and/or Aß 1-40 (0, 0.1, 0.3, 0.5, 1, 3, and 5 µmol/l) for the indicated times. Cellular senescence was evaluated by senescence-associated ß-galactosidase staining. RESULTS: Treatment with Ang II (100 nmol/l) or Aß (1 µmol/l) at a higher dose increased senescent cells compared with control at 6 days. Treatment with Ang II (10 nmol/l) or Aß (0.5 µmol/l) at a lower dose had no effect on senescence whereas a combined treatment with lower doses of Ang II and Aß significantly enhanced senescent cells. This senescence enhanced by lower dose combination was markedly blocked by valsartan (Ang II type 1 receptor inhibitor) or TAK-242 (Aß receptor TLR4 inhibitor) treatment. Moreover, lower dose combination caused increases in superoxide anion levels and p-ERK expression for 2 days, NF-κB activity, p-IκB, p-IKKα/ß, p16 and p53 expression for 4 days, and an obvious decrease in pRb expression. These changes by lower dose combination, except in p-IκB expression and NF-κB activity, were significantly inhibited by pretreatment with U0126 (ERK inhibitor). CONCLUSIONS: Ang II and Aß synergistically promoted BVSMC senescence at least due to enhancement of the p-ERK-p16-pRb signaling pathway, oxidative stress, and NF-κB/IκB activity.


Asunto(s)
Péptidos beta-Amiloides , Angiotensina II , Senescencia Celular , Péptidos beta-Amiloides/farmacología , Angiotensina II/farmacología , Animales , Encéfalo/metabolismo , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Masculino , Ratones , Músculo Liso Vascular/metabolismo
9.
Anal Chem ; 92(21): 14383-14392, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32881480

RESUMEN

Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.

10.
PLoS Genet ; 16(5): e1008826, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32453729

RESUMEN

Hearing loss (HL) is one of the most common sensory impairments and etiologically and genetically heterogeneous disorders in humans. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. Aberrant glycosylation of α-dystroglycan causes at least eighteen subtypes of MD, now categorized as MD-dystroglycanopathy (MD-DG), with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes and increasing evidence regarding their molecular pathogeneses, no comprehensive study has investigated sensorineural HL (SNHL) in MD-DG. Here, we found that two mouse models of MD-DG, Largemyd/myd and POMGnT1-KO mice, exhibited congenital, non-progressive, and mild-to-moderate SNHL in auditory brainstem response (ABR) accompanied by extended latency of wave I. Profoundly abnormal myelination was found at the peripheral segment of the cochlear nerve, which is rich in the glycosylated α-dystroglycan-laminin complex and demarcated by "the glial dome." In addition, patients with Fukuyama congenital MD, a type of MD-DG, also had latent SNHL with extended latency of wave I in ABR. Collectively, these findings indicate that hearing impairment associated with impaired Schwann cell-mediated myelination at the peripheral segment of the cochlear nerve is a notable symptom of MD-DG.


Asunto(s)
Nervio Coclear/metabolismo , Distroglicanos/genética , Pérdida Auditiva Sensorineural/metabolismo , Proteína Básica de Mielina/metabolismo , N-Acetilglucosaminiltransferasas/genética , Síndrome de Walker-Warburg/fisiopatología , Adolescente , Animales , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Técnicas de Inactivación de Genes , Glicosilación , Pérdida Auditiva Sensorineural/etiología , Pérdida Auditiva Sensorineural/genética , Humanos , Lactante , Masculino , Ratones , Síndrome de Walker-Warburg/complicaciones , Síndrome de Walker-Warburg/genética , Adulto Joven
11.
J Biol Chem ; 295(11): 3678-3691, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31996371

RESUMEN

Alzheimer's disease (AD) is the most common type of dementia, and its pathogenesis is associated with accumulation of ß-amyloid (Aß) peptides. Aß is produced from amyloid precursor protein (APP) that is sequentially cleaved by ß- and γ-secretases. Therefore, APP processing has been a target in therapeutic strategies for managing AD; however, no effective treatment of AD patients is currently available. Here, to identify endogenous factors that modulate Aß production, we performed a gene microarray-based transcriptome analysis of neuronal cells derived from human induced pluripotent stem cells, because Aß production in these cells changes during neuronal differentiation. We found that expression of the glycophosphatidylinositol-specific phospholipase D1 (GPLD1) gene is associated with these changes in Aß production. GPLD1 overexpression in HEK293 cells increased the secretion of galectin 3-binding protein (GAL3BP), which suppressed Aß production in an AD model, neuroglioma H4 cells. Mechanistically, GAL3BP suppressed Aß production by directly interacting with APP and thereby inhibiting APP processing by ß-secretase. Furthermore, we show that cells take up extracellularly added GAL3BP via endocytosis and that GAL3BP is localized in close proximity to APP in endosomes where amyloidogenic APP processing takes place. Taken together, our results indicate that GAL3BP may be a suitable target of AD-modifying drugs in future therapeutic strategies for managing AD.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Antígenos de Neoplasias/metabolismo , Biomarcadores de Tumor/metabolismo , Comunicación Autocrina , Diferenciación Celular , Línea Celular , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Comunicación Paracrina , Fosfolipasa D/metabolismo , Unión Proteica
12.
Nat Commun ; 11(1): 303, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31949166

RESUMEN

α-Dystroglycan (α-DG) is a highly-glycosylated surface membrane protein. Defects in the O-mannosyl glycan of α-DG cause dystroglycanopathy, a group of congenital muscular dystrophies. The core M3 O-mannosyl glycan contains tandem ribitol-phosphate (RboP), a characteristic feature first found in mammals. Fukutin and fukutin-related protein (FKRP), whose mutated genes underlie dystroglycanopathy, sequentially transfer RboP from cytidine diphosphate-ribitol (CDP-Rbo) to form a tandem RboP unit in the core M3 glycan. Here, we report a series of crystal structures of FKRP with and without donor (CDP-Rbo) and/or acceptor [RboP-(phospho-)core M3 peptide] substrates. FKRP has N-terminal stem and C-terminal catalytic domains, and forms a tetramer both in crystal and in solution. In the acceptor complex, the phosphate group of RboP is recognized by the catalytic domain of one subunit, and a phosphate group on O-mannose is recognized by the stem domain of another subunit. Structure-based functional studies confirmed that the dimeric structure is essential for FKRP enzymatic activity.


Asunto(s)
Distrofias Musculares/metabolismo , Azúcares de Nucleósido Difosfato/química , Azúcares de Nucleósido Difosfato/metabolismo , Pentosiltransferasa/química , Pentosiltransferasa/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Glicopéptidos , Células HEK293 , Humanos , Modelos Moleculares , Distrofias Musculares/genética , Pentosiltransferasa/genética , Fosfatos/metabolismo , Polisacáridos/metabolismo , Conformación Proteica , Dominios Proteicos , Ribitol/metabolismo
13.
Nat Commun ; 10(1): 5754, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848331

RESUMEN

Heart failure is the major cause of death for muscular dystrophy patients, however, the molecular pathomechanism remains unknown. Here, we show the detailed molecular pathogenesis of muscular dystrophy-associated cardiomyopathy in mice lacking the fukutin gene (Fktn), the causative gene for Fukuyama muscular dystrophy. Although cardiac Fktn elimination markedly reduced α-dystroglycan glycosylation and dystrophin-glycoprotein complex proteins in sarcolemma at all developmental stages, cardiac dysfunction was observed only in later adulthood, suggesting that membrane fragility is not the sole etiology of cardiac dysfunction. During young adulthood, Fktn-deficient mice were vulnerable to pathological hypertrophic stress with downregulation of Akt and the MEF2-histone deacetylase axis. Acute Fktn elimination caused severe cardiac dysfunction and accelerated mortality with myocyte contractile dysfunction and disordered Golgi-microtubule networks, which were ameliorated with colchicine treatment. These data reveal fukutin is crucial for maintaining myocyte physiology to prevent heart failure, and thus, the results may lead to strategies for therapeutic intervention.


Asunto(s)
Insuficiencia Cardíaca/etiología , Músculo Esquelético/patología , Distrofias Musculares/complicaciones , Miocitos Cardíacos/patología , Transferasas/genética , Adulto , Factores de Edad , Animales , Animales Recién Nacidos , Sistemas CRISPR-Cas/genética , Células Cultivadas , Modelos Animales de Enfermedad , Distroglicanos/metabolismo , Femenino , Técnicas de Inactivación de Genes , Glicosilación , Células HEK293 , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/patología , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Músculo Esquelético/citología , Distrofias Musculares/genética , Distrofias Musculares/patología , Contracción Miocárdica/genética , Miocitos Cardíacos/citología , Cultivo Primario de Células , Sarcolema/patología , Transferasas/metabolismo
14.
Sci Rep ; 9(1): 13037, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506597

RESUMEN

Human induced pluripotent stem cells (hiPSCs) grow indefinitely in culture and have the potential to regenerate various tissues. In the development of cell culture systems, a fragment of laminin-511 (LM511-E8) was found to improve the proliferation of stem cells. The adhesion of undifferentiated cells to LM511-E8 is mainly mediated through integrin α6ß1. However, the involvement of non-integrin receptors remains unknown in stem cell culture using LM511-E8. Here, we show that dystroglycan (DG) is strongly expressed in hiPSCs. The fully glycosylated DG is functionally active for laminin binding, and although it has been suggested that LM511-E8 lacks DG binding sites, the fragment does weakly bind to DG. We further identified the DG binding sequence in LM511-E8, using synthetic peptides, of which, hE8A5-20 (human laminin α5 2688-2699: KTLPQLLAKLSI) derived from the laminin coiled-coil domain, exhibited DG binding affinity and cell adhesion activity. Deletion and mutation studies show that LLAKLSI is the active core sequence of hE8A5-20, and that, K2696 is a critical amino acid for DG binding. We further demonstrated that hiPSCs adhere to hE8A5-20-conjugated chitosan matrices. The amino acid sequence of DG binding peptides would be useful to design substrata for culture system of undifferentiated and differentiated stem cells.


Asunto(s)
Adhesión Celular , Distroglicanos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Laminina/metabolismo , Fragmentos de Péptidos/metabolismo , Secuencia de Aminoácidos , Biomarcadores , Células Cultivadas , Matriz Extracelular , Técnica del Anticuerpo Fluorescente , Humanos , Laminina/química , Fragmentos de Péptidos/química , Unión Proteica , Transporte de Proteínas
15.
J Neuromuscul Dis ; 6(2): 175-187, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30856120

RESUMEN

Glycosylation is a major form of post-translational modification and plays various important roles in organisms by modifying proteins or lipids, which generates functional variability and can increase their stability. Because of the physiological importance of glycosylation, defects in genes encoding proteins involved in glycosylation or glycan degradation are sometimes associated with human diseases. A number of genetic neuromuscular diseases are caused by abnormal glycan modification or degeneration. Heterogeneous and complex modification machinery, and difficulties in structural and functional analysis of glycans have impeded the understanding of how glycosylation contributes to pathology. However, recent rapid advances in glycan and genetic analyses, as well as accumulating genetic and clinical information have greatly contributed to identifying glycan structures and modification enzymes, which has led to breakthroughs in the understanding of the molecular pathogenesis of various diseases and the possible development of therapeutic strategies. For example, studies on the relationship between glycosylation and muscular dystrophy in the last two decades have significantly impacted the fields of glycobiology and neuromyology. In this review, the basis of glycan structure and biosynthesis will be briefly explained, and then molecular pathogenesis and therapeutic concepts related to neuromuscular diseases will be introduced from the point of view of the life cycle of a glycan molecule.


Asunto(s)
Glicosilación , Enfermedades Musculares , Polisacáridos , Animales , Humanos , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Polisacáridos/química , Polisacáridos/genética , Polisacáridos/metabolismo
16.
Acta Neuropathol ; 137(3): 455-466, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30721406

RESUMEN

Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disease that is characterized by varying degrees of cerebellar dysfunction and Parkinsonism. The neuropathological hallmark of MSA is alpha-synuclein (AS)-positive glial cytoplasmic inclusions (GCIs). Although severe neuronal loss (NL) is also observed in MSA, neuronal inclusions (NIs) are rare compared to GCIs, such that the pathological mechanism of NL in MSA is unclear. GCIs and NIs are late-stage pathology features relative to AS oligomers and may not represent early pathological changes in MSA. To reveal the early pathology of MSA, it is necessary to examine the early aggregation of AS, i.e., AS oligomers. Here, we adopted a proximity ligation assay (PLA) to examine the distribution of AS oligomers in brain tissue samples from patients with MSA and other diseases. Surprisingly, MSA brains showed a widespread distribution and abundant accumulation of oligomeric AS in neurons as well as oligodendrocytes of the neocortex. In several regions, oligomeric AS signal intensity was higher in cases with MSA than in cases with Parkinson's disease. In contrast to previous studies, AS-PLA revealed abundant AS oligomer accumulation in Purkinje cells in MSA brains, identifying oligomeric AS accumulation as a possible cause of Purkinje cell loss. This wide distribution of AS oligomers in MSA brain neurons has not been described previously and indicates a pathological mechanism of NL in MSA.


Asunto(s)
Inmunohistoquímica/métodos , Atrofia de Múltiples Sistemas/patología , alfa-Sinucleína/análisis , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Femenino , Humanos , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Células de Purkinje/patología , alfa-Sinucleína/metabolismo
17.
Cell Rep ; 25(1): 130-145.e5, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30282023

RESUMEN

Establishing synaptic contacts between neurons is paramount for nervous system function. This process involves transsynaptic interactions between a host of cell adhesion molecules that act in cooperation with the proteins of the extracellular matrix to specify unique physiological properties of individual synaptic connections. However, understanding of the molecular mechanisms that generate functional diversity in an input-specific fashion is limited. In this study, we identify that major components of the extracellular matrix proteins present in the synaptic cleft-members of the heparan sulfate proteoglycan (HSPG) family-associate with the GPR158/179 group of orphan receptors. Using the mammalian retina as a model system, we demonstrate that the HSPG member Pikachurin, released by photoreceptors, recruits a key post-synaptic signaling complex of downstream ON-bipolar neurons in coordination with the pre-synaptic dystroglycan glycoprotein complex. We further demonstrate that this transsynaptic assembly plays an essential role in synaptic transmission of photoreceptor signals.


Asunto(s)
Proteínas Portadoras/metabolismo , Distroglicanos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Unión Proteica , Sinapsis/metabolismo , Transmisión Sináptica/fisiología
18.
Hum Mol Genet ; 27(22): 3974-3985, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30137437

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss. At present, there are no drugs that stop the progression of PD. As with other multifactorial genetic disorders, genome-wide association studies (GWASs) found multiple risk loci for PD, although their clinical significance remains uncertain. Here, we report the identification of candidate drugs for PD by a method using GWAS data and in silico databases. We identified 57 Food and Drug Administration-approved drug families as candidate neuroprotective drugs for PD. Among them, dabrafenib, which is known as a B-Raf kinase inhibitor and is approved for the treatment of malignant melanoma, showed remarkable cytoprotective effects in neurotoxin-treated SH-SY5Y cells and mice. Dabrafenib was found to inhibit apoptosis, and to enhance the phosphorylation of extracellular signal-regulated kinase (ERK), and inhibit the phosphorylation of c-Jun NH2-terminal kinase. Dabrafenib targets B-Raf, and we confirmed a protein-protein interaction between B-Raf and Rit2, which is coded by RIT2, a PD risk gene in Asians and Caucasians. In RIT2-knockout cells, the phosphorylation of ERK was reduced, and dabrafenib treatment improved the ERK phosphorylation. These data indicated that dabrafenib exerts protective effects against neurotoxicity associated with PD. By using animal model, we confirmed the effectiveness of this in silico screening method. Furthermore, our results suggest that this in silico drug screening system is useful in not only neurodegenerative diseases but also other common diseases such as diabetes mellitus and hypertension.


Asunto(s)
Imidazoles/administración & dosificación , Proteínas de Unión al GTP Monoméricas/genética , Fármacos Neuroprotectores/administración & dosificación , Oximas/administración & dosificación , Enfermedad de Parkinson/tratamiento farmacológico , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Simulación por Computador , Citoprotección/efectos de los fármacos , Bases de Datos de Compuestos Químicos , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Aprobación de Drogas , Evaluación Preclínica de Medicamentos/métodos , Estudio de Asociación del Genoma Completo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Ratones , Proteínas de Unión al GTP Monoméricas/antagonistas & inhibidores , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosforilación/efectos de los fármacos , Mapas de Interacción de Proteínas , Inhibidores de Proteínas Quinasas/administración & dosificación , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores
19.
J Biol Chem ; 293(31): 12186-12198, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29884773

RESUMEN

α-Dystroglycan (α-DG) is a highly glycosylated cell-surface laminin receptor. Defects in the O-mannosyl glycan of an α-DG with laminin-binding activity can cause α-dystroglycanopathy, a group of congenital muscular dystrophies. In the biosynthetic pathway of functional O-mannosyl glycan, fukutin (FKTN) and fukutin-related protein (FKRP), whose mutated genes underlie α-dystroglycanopathy, sequentially transfer ribitol phosphate (RboP) from CDP-Rbo to form a tandem RboP unit (RboP-RboP) required for the synthesis of the laminin-binding epitope on O-mannosyl glycan. Both RboP- and glycerol phosphate (GroP)-substituted glycoforms have recently been detected in recombinant α-DG. However, it is unclear how GroP is transferred to the O-mannosyl glycan or whether GroP substitution affects the synthesis of the O-mannosyl glycan. Here, we report that, in addition to having RboP transfer activity, FKTN and FKRP can transfer GroP to O-mannosyl glycans by using CDP-glycerol (CDP-Gro) as a donor substrate. Kinetic experiments indicated that CDP-Gro is a less efficient donor substrate for FKTN than is CDP-Rbo. We also show that the GroP-substituted glycoform synthesized by FKTN does not serve as an acceptor substrate for FKRP and that therefore further elongation of the outer glycan chain cannot occur with this glycoform. Finally, CDP-Gro inhibited the RboP transfer activities of both FKTN and FKRP. These results suggest that CDP-Gro inhibits the synthesis of the functional O-mannosyl glycan of α-DG by preventing further elongation of the glycan chain. This is the first report of GroP transferases in mammals.


Asunto(s)
Distroglicanos/metabolismo , Glicerol/metabolismo , Distrofias Musculares/metabolismo , Polisacáridos/metabolismo , Glicerol/química , Glicosilación , Humanos , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Distrofias Musculares/genética , Pentosafosfatos/metabolismo , Pentosiltransferasa , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
20.
Nat Commun ; 9(1): 2049, 2018 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-29799007

RESUMEN

Myotube formation by fusion of myoblasts and subsequent elongation of the syncytia is essential for skeletal muscle formation. However, molecules that regulate myotube formation remain elusive. Here we identify PIEZO1, a mechanosensitive Ca2+ channel, as a key regulator of myotube formation. During myotube formation, phosphatidylserine, a phospholipid that resides in the inner leaflet of the plasma membrane, is transiently exposed to cell surface and promotes myoblast fusion. We show that cell surface phosphatidylserine inhibits PIEZO1 and that the inward translocation of phosphatidylserine, which is driven by the phospholipid flippase complex of ATP11A and CDC50A, is required for PIEZO1 activation. PIEZO1-mediated Ca2+ influx promotes RhoA/ROCK-mediated actomyosin assemblies at the lateral cortex of myotubes, thus preventing uncontrolled fusion of myotubes and leading to polarized elongation during myotube formation. These results suggest that cell surface flip-flop of phosphatidylserine acts as a molecular switch for PIEZO1 activation that governs proper morphogenesis during myotube formation.


Asunto(s)
Diferenciación Celular , Membrana Celular/metabolismo , Canales Iónicos/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfatidilserinas/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Membrana Celular/genética , Humanos , Canales Iónicos/genética , Ratones , Fibras Musculares Esqueléticas/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...