Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytochemistry ; 104: 30-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24837355

RESUMEN

The aldo-keto reductase (AKR) superfamily is a large enzyme group of NADP-dependent oxidoreductases with numerous roles in metabolism, but many members in this superfamily remain uncharacterized. Here, PpAKR1, which was cloned from the rosaceous peach tree (Prunus persica), was investigated as a member of the superfamily. While PpAKR1 had amino acids that are important in AKRs and which belonged to the AKR4 group, PpAKR1 did not seem to belong to any of the AKR4 subgroups. PpAKR1 mRNA abundance increased with abscisic acid, oxidative stress, and cold and salt stress treatments in peach. NADP-dependent polyol dehydrogenase activity was increased in Arabidopsis thaliana transformed with PpAKR1. Salt tolerance increased in Arabidopsis transformed with PpAKR1. PpAKR1, which was a previously uncharacterized member of the AKR superfamily, could be involved in the abiotic stress tolerance.


Asunto(s)
Aldehído Reductasa/genética , Regulación de la Expresión Génica de las Plantas , Prunus/enzimología , Estrés Fisiológico , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiología , Frutas/enzimología , Frutas/genética , Frutas/fisiología , Expresión Génica , Regulación Enzimológica de la Expresión Génica , Genes Reporteros , L-Iditol 2-Deshidrogenasa/genética , L-Iditol 2-Deshidrogenasa/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Prunus/genética , Prunus/fisiología , Tolerancia a la Sal , Alineación de Secuencia
2.
J Exp Bot ; 63(15): 5613-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22915738

RESUMEN

cDNA corresponding to two type-I vacuolar H(+)-inorganic pyrophosphatases (V-PPases) (SlVP1, SlVP2) and one type-II V-PPase (SlVP3) was isolated from tomato fruit to investigate their role in fruit development. Southern analysis revealed that type-I V-PPase genes form a multigene family, whereas there is only one type-II V-PPase gene in the tomato genome. Although SlVP1 and SlVP2 were differentially expressed in leaves and mature fruit, the highest levels of both SlVP1 and SlVP2 mRNA were observed in fruit at 2-4 days after anthesis. The expression pattern of type-II SlVP3 was similar to that of SlVP2, and the highest levels of SlVP3 mRNA were also observed in fruit at 2-4 days after anthesis, thus suggesting that SlVP3 plays a role in early fruit development. Because SlVP1 and SlVP2 mRNA was more abundant than SlVP3 mRNA, expression of type-I V-PPases was analysed further. Type-I V-PPase mRNA was localized in ovules and their vicinities and in vascular tissue at an early stage of fruit development. Tomato RNAi lines in which the expression of type-I V-PPase genes was repressed using the fruit-specific promoter TPRP-F1 exhibited fruit growth retardation at an early stage of development. Although the major function of V-PPases in fruit has been believed to be the accumulation of materials such as sugars and organic acids in the vacuole during cell expansion and ripening, these results show that specific localization of V-PPase mRNA induced by pollination has a novel role in the cell division stage.


Asunto(s)
Frutas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Pirofosfatasa Inorgánica/metabolismo , Solanum lycopersicum/enzimología , Vacuolas/enzimología , Secuencia de Aminoácidos , División Celular , ADN Complementario/genética , Frutas/enzimología , Frutas/genética , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Pirofosfatasa Inorgánica/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Datos de Secuencia Molecular , Especificidad de Órganos , Fenotipo , Filogenia , Polinización , Interferencia de ARN , ARN Mensajero/genética , ARN de Planta/genética , Alineación de Secuencia
3.
J Plant Physiol ; 168(16): 1927-33, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21683470

RESUMEN

Tomato (Solanum lycopersicum L.) plants were transformed with an antisense construct of a cDNA encoding tomato telomere-binding protein (LeTBP1) to describe the role of a telomere-binding protein at the whole plant level. Fruit size decreased corresponding to the degree of suppression of LeTBP1 expression. This inhibition of fruit development was likely due to a decrease in the number of seeds in the LeTBP1 antisense plants. Pollen fertility and pollen germination rate decreased in accordance with the degree of suppression of LeTBP1 expression. Ovule viability was also reduced in the LeTBP1 antisense plants. Although plant height was somewhat reduced in the antisense plants compared to the control plants, the number and weight of leaves were unaffected by LeTBP1 suppression. The number and morphology of flowers were also normal in the antisense plants. These indicate that reduced fertility in the antisense plants is not an indirect effect of altered vegetative growth. LeTBP1 expression was sensitive to temperature stress in wild-type plants. We conclude that LeTBP1 plays a critical role in seed and fruit development rather than vegetative growth and flower formation.


Asunto(s)
Frutas/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Supresión Genética/genética , Proteínas de Unión a Telómeros/genética , Cromosomas de las Plantas/genética , ADN sin Sentido/genética , ADN Complementario/genética , ADN de Plantas/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Frutas/genética , Frutas/fisiología , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/citología , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Meristema/citología , Óvulo Vegetal/fisiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Polen/fisiología , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Proteínas de Unión a Telómeros/metabolismo , Temperatura
4.
Planta ; 234(2): 321-30, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21431295

RESUMEN

The effects of light quality on flowering time were investigated in Gypsophila paniculata, which is a long-day cut flower, and with Arabidopsis under long-day conditions with light-emitting diodes (LEDs). Gypsophila paniculata plants were grown under natural daylight and flowering was controlled by long-day treatment with a weak LED light of a single color in the night. Flowering was promoted not by blue light, but by far-red light in G. paniculata, while flowering was promoted by both light colors in Arabidopsis. FT homologs of G. paniculata GpFT1 and GpFT2 were differentially expressed under long-day conditions with white light, suggesting that they play roles in flowering at different stages of reproductive development. GpFTs and FT gene expression was not induced by far-red light in G. paniculata or Arabidopsis. Instead, the expression of the SOC1 homolog of G. paniculata GpSOC1 and SOC1 was induced by far-red light in G. paniculata and Arabidopsis. Flowering was promoted by induction of FT and SOC1 expression with blue light in Arabidopsis, whereas GpFTs and GpSOC1 expression was low with blue light induction in G. paniculata. The relationship between flowering and the expression of FT and SOC1 in Arabidopsis was confirmed with ft and soc1 mutants. These results suggest that long-day conditions with far-red light promote flowering through SOC1 and its homologs, while the conditions with blue light do not promote flowering in G. paniculata, because of low expression of GpFTs and GpSOC1 in contrast to that in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Caryophyllaceae/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Proteínas de Dominio MADS/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/efectos de la radiación , Caryophyllaceae/genética , Caryophyllaceae/efectos de la radiación , Clonación Molecular , ADN Complementario/genética , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas/genética , Luz , Iluminación , Proteínas de Dominio MADS/efectos de la radiación , Datos de Secuencia Molecular , Mutación , Fotoperiodo , Filogenia , Proteínas de Plantas/efectos de la radiación , Plantas Modificadas Genéticamente , Alineación de Secuencia , Factores de Tiempo
5.
Planta ; 232(3): 755-64, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20571824

RESUMEN

Auxin transport network, which is important in the integration of plant developmental signals, depends on differential expression of the auxin efflux carrier PIN gene family. We cloned three tomato PIN (referred as SlPIN) cDNAs and examined their expression patterns in fruit and other organs. The expression of SlPIN1 and SlPIN2 was highest in very young fruit immediately after anthesis, whereas the expression of SlPIN3 was low at this same stage of fruit development. SlPIN2::GUS was expressed in ovules at anthesis and in young developing seeds at 4 days after anthesis, while SlPIN1::GUS was expressed in whole fruit. The DR5::GUS auxin-responsive reporter gene was expressed in the fruit and peduncle at anthesis and was higher in the peduncle 4 days after anthesis. These studies suggest that auxin is likely transported from young seeds by SlPIN1 and SlPIN2 and accumulated in peduncles where SlPIN gene expression is low in tomato. The possible role of SlPINs in fruit set was discussed.


Asunto(s)
Proteínas Portadoras/genética , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Clonación Molecular , Cartilla de ADN , ADN Complementario , Genes de Plantas , Genes Reporteros , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido
6.
J Plant Physiol ; 167(3): 238-41, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19733934

RESUMEN

Nitrogenase activity, as acetylene-reduction activity (ARA), in Lotus root nodules was clearly inhibited 27h after the addition of nitrate. Nitric oxide (NO) production was detected at that time in nitrate-supplied root nodules using the NO-reactive fluorescent probe diaminofluorescein-2 diacetate. The involvement of NO production in the inhibition of nitrogenase activity by nitrate was investigated using the NO donor sodium nitroprusside (SNP) and the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO). SNP inhibited ARA at 1mM, and c-PTIO suppressed the inhibition of ARA by nitrate. These results suggest that NO is involved in the inhibition of nitrogenase activity by nitrate in Lotus root nodules.


Asunto(s)
Lotus/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitrogenasa/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Nitrogenasa/antagonistas & inhibidores
7.
Plant Cell Environ ; 29(10): 1980-8, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16930323

RESUMEN

Many efforts have been made to engineer stress tolerance by accumulating polyols. Transformants that accumulate polyols often show growth inhibition, because polyols are synthesized as a dead-end product in plants that do not naturally accumulate polyols. Here, we show a novel strategy in which a sorbitol cycle was engineered by introducing apple cDNA encoding NAD-dependent sorbitol dehydrogenase (SDH) in addition to sorbitol-6-phosphate dehydrogenase (S6PDH). Tobacco plants transformed only with S6PDH showed growth inhibition, and very few transformants were obtained. In contrast, many transgenic plants with both S6PDH and SDH were easily obtained, and their growth was normal despite their accumulation of sorbitol. Interestingly, the engineered sorbitol cycle enhanced the accumulation of sucrose instead of fructose that was expected to be increased. Sucrose, rather than fructose, was also increased in the immature fruit of tomato plants transformed with an antisense fructokinase gene in which the phosphorylation of fructose was inhibited. A common phenomenon was observed in the metabolic engineering of two different pathways, showing the presence of homeostatic regulation of fructose levels.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Nicotiana/metabolismo , Sorbitol/metabolismo , Elementos sin Sentido (Genética) , Fructoquinasas/genética , Inositol/metabolismo , L-Iditol 2-Deshidrogenasa/genética , Solanum lycopersicum/genética , Deshidrogenasas del Alcohol de Azúcar/genética , Nicotiana/crecimiento & desarrollo , Transformación Genética
8.
Phytochemistry ; 66(24): 2822-8, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16289145

RESUMEN

The enzyme NAD-dependent sorbitol dehydrogenase (SDH) is well characterized in the Rosaceae family of fruit trees, which synthesizes sorbitol as a translocatable photosynthate. Expressed sequence tags of SDH-like sequences have also been generated from various non-Rosaceae species that do not synthesize sorbitol as a primary photosynthetic product, but the physiological roles of the encoded proteins in non-Rosaceae plants are unknown. Therefore, we isolated an SDH-like cDNA (SDL) from tomato (Lycopersicon esculentum Mill.). Genomic Southern blot analysis suggested that SDL exists in the tomato genome as a single-copy gene. Northern blot analysis showed that SDL is ubiquitously expressed in tomato plants. Recombinant SDL protein was produced and purified for enzymatic characterization. SDL catalyzed the interconversion of sorbitol and fructose with NAD (H). SDL showed highest activity for sorbitol among the several substrates tested. SDL showed no activity with NADP+. Thus, SDL was identified as a SDH, although the Km values and substrate specificity of SDL were significantly different from those of SDH purified from the Japanese pear (Pyrus pyrifolia), a Rosaceae fruit tree. In addition, tomato was transformed with antisense SDL to evaluate the contribution of SDL to SDH activity in tomato. The transformation decreased SDH activity to approximately 50% on average. Taken together, these results provide molecular evidence of SDH in tomato, and SDL was renamed LeSDH.


Asunto(s)
L-Iditol 2-Deshidrogenasa/genética , L-Iditol 2-Deshidrogenasa/metabolismo , Solanum lycopersicum/enzimología , Secuencia de Aminoácidos , Northern Blotting , Southern Blotting , ADN sin Sentido , Fructosa/metabolismo , Regulación de la Expresión Génica de las Plantas , Solanum lycopersicum/genética , Datos de Secuencia Molecular , NAD/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rosaceae/enzimología , Homología de Secuencia de Aminoácido , Sorbitol/metabolismo , Especificidad por Sustrato , Transformación Genética
9.
J Plant Physiol ; 162(6): 697-702, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16008092

RESUMEN

Most previous efforts to isolate genes that are expressed during fruit development have focused on fruit ripening. As a result, information is lacking on fruit genes that are specifically expressed at early developmental stages. Using a cDNA subtraction technique, we isolated fruit-specific genes that are expressed during the cell expansion phase of tomato (Lycopersicon esculentum Mill) fruit development. One of the isolated cDNAs, LeODD, is transiently expressed 15 days after flowering in a nearly fruit-specific manner during the initial period of cell expansion. Southern blot analysis indicated that LeODD is encoded by a single gene. LeODD is homologous to 2-oxoglutarate-dependent dioxygenase genes, and the key amino acid residues in the binding sites for ferrous iron and 2-oxoglutarate are completely conserved. The amino acid sequence identity between LeODD and other 2-oxoglutarate-dependent dioxygenases is relatively low, suggesting that LeODD is a novel enzyme of this family. Another of the isolated cDNAs, LeGLO2, is also highly expressed at 15 days after flowering. LeGLO2 is thought to be a novel glycolate oxidase isoform that functions in fruit. 2-Oxoglutarate, the cosubstrate of LeODD, could be supplied by a LeGLO2-mediated glycolate pathway in immature fruit. The coordinate expression of LeODD and LeGLO2 may play a role in the biosynthesis of a metabolite, such as a plant hormone or secondary metabolite, that is required during the initial period of the cell expansion phase of fruit development.


Asunto(s)
Dioxigenasas/biosíntesis , Frutas/enzimología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Solanum lycopersicum/enzimología , Secuencia de Aminoácidos , Frutas/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
10.
J Exp Bot ; 54(388): 1685-90, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12773524

RESUMEN

Nitrate-independent nitrate reductase (NR) activity is generally found in legume root nodules. Therefore, the effects of nitrate on plant NR activity and mRNA were investigated in the root nodules of Lotus japonicus (L. japonicus). Both NR activity and mRNA levels in roots and root nodules were up-regulated by the addition of nitrate. In the absence of nitrate, NR activity and mRNA were detected in root nodules but not in roots. Southern blotting analysis indicates that NR is encoded by a single gene in L. japonicus. No nitrate was detected in the root nodules or roots of plants grown in the absence of nitrate, while its accumulation was observed in plants supplied with exogenous nitrate. These results indicate that inducible-type NR can be expressed in root nodules in the absence of nitrate. The activation state of the nitrate-independent activity of NR was as high as that of NR activity induced by nitrate. NR mRNA expressed independently of nitrate in root nodules without nitrate was localized in the infected regions of the root nodules. Thus, the expression could be related to the specific structure and environment of root nodules.


Asunto(s)
Lotus/enzimología , Nitrato Reductasas/genética , Nitratos/farmacología , Fijación del Nitrógeno/fisiología , Raíces de Plantas/crecimiento & desarrollo , Secuencia de Aminoácidos , Northern Blotting , Southern Blotting , Clonación Molecular , ADN Complementario/química , ADN Complementario/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hibridación in Situ , Lotus/efectos de los fármacos , Lotus/crecimiento & desarrollo , Datos de Secuencia Molecular , Nitrato-Reductasa , Nitrato Reductasas/metabolismo , Nitratos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Simbiosis/efectos de los fármacos , Simbiosis/genética , Simbiosis/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...