Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Med ; 220(11)2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37725372

RESUMEN

Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. ß-cyclodextrin polyrotaxane (ßCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with ßCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Modelos Animales de Enfermedad , Cirrosis Hepática , Macrófagos , Colesterol , Lisosomas
2.
Org Biomol Chem ; 18(15): 2823-2827, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32232252

RESUMEN

Here, we report peptide probes with either single or cyclic double stranded collagen-like sequences that spontaneously acquire collagen-hybridizing ability at physiological pH. These peptides have ester bonds derived from O-acyl isopeptide units that are converted to amide bonds via intramolecular O-to-N acyl migration by a pH shift. The peptides that do not require pre-treatment for disassembly will be useful as prodrugs in theranostic treatments targeting unfolded collagen.


Asunto(s)
Colágeno/química , Péptidos/química , Concentración de Iones de Hidrógeno , Conformación Molecular , Péptidos/síntesis química
3.
Sci Rep ; 10(1): 983, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969650

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a hepatic phenotype of the metabolic syndrome, and increases the risk of cirrhosis and hepatocellular carcinoma (HCC). Although increasing evidence points to the therapeutic implications of certain types of anti-diabetic agents in NASH, it remains to be elucidated whether their effects on NASH are independent of their effects on diabetes. Genetically obese melanocortin 4 receptor-deficient (MC4R-KO) mice fed Western diet are a murine model that sequentially develops hepatic steatosis, NASH, and HCC in the presence of obesity and insulin resistance. In this study, we investigated the effect of the dipeptidyl peptidase-4 (DPP-4) inhibitor anagliptin on NASH and HCC development in MC4R-KO mice. Anagliptin treatment effectively prevented inflammation, fibrosis, and carcinogenesis in the liver of MC4R-KO mice. Interestingly, anagliptin only marginally affected body weight, systemic glucose and lipid metabolism, and hepatic steatosis. Histological data and gene expression analysis suggest that anagliptin treatment targets macrophage activation in the liver during the progression from simple steatosis to NASH. As a molecular mechanism underlying anagliptin action, we showed that glucagon-like peptide-1 suppressed proinflammatory and profibrotic phenotypes of macrophages in vitro. This study highlights the glucose metabolism-independent effects of anagliptin on NASH and HCC development.


Asunto(s)
Carcinoma Hepatocelular/prevención & control , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Cirrosis Hepática/prevención & control , Neoplasias Hepáticas/prevención & control , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Sustancias Protectoras/farmacología , Pirimidinas/farmacología , Animales , Carcinoma Hepatocelular/patología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática/patología , Neoplasias Hepáticas/patología , Masculino , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Sustancias Protectoras/uso terapéutico , Pirimidinas/uso terapéutico
4.
Sci Rep ; 9(1): 19601, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31862949

RESUMEN

Non-alcoholic steatohepatitis (NASH), characterized by chronic inflammation and fibrosis, is predicted to be the leading cause of cirrhosis and hepatocellular carcinoma (HCC) in the next decade. Although recent evidence suggests the importance of fibrosis as the strongest determinant of HCC development, the molecular mechanisms underlying NASH-induced carcinogenesis still remain unclear. Here we performed RNA sequencing analysis to compare gene expression profiles of activated fibroblasts prepared from two distinct liver fibrosis models: carbon tetrachloride-induced fibrosis as a model without obesity and HCC and genetically obese melanocortin 4 receptor-deficient (MC4R-KO) mice fed Western diet, which develop steatosis, NASH, and eventually HCC. Our data showed that activated fibroblasts exhibited distinct gene expression patterns in each etiology, and that the 'pathways in cancer' were selectively upregulated in the activated fibroblasts from MC4R-KO mice. The most upregulated gene in these pathways was fibroblast growth factor 9 (FGF9), which was induced by metabolic stress such as palmitate. FGF9 exerted anti-apoptotic and pro-migratory effects in fibroblasts and hepatoma cells in vitro and accelerated tumor growth in a subcutaneous xenograft model. This study reveals upregulation of cancer-associated gene expression in activated fibroblasts in NASH, which would contribute to the progression from NASH to HCC.


Asunto(s)
Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Regulación hacia Arriba , Animales , Apoptosis , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Progresión de la Enfermedad , Factor 9 de Crecimiento de Fibroblastos/genética , Perfilación de la Expresión Génica , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trasplante de Neoplasias
5.
Sci Rep ; 8(1): 8157, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802399

RESUMEN

Accumulating evidence has suggested that farnesoid X receptor (FXR) agonists, such as obeticholic acid (OCA) are therapeutically useful for non-alcoholic steatohepatitis (NASH). However, it is still unclear how FXR agonists protect against NASH and which cell type is the main target of FXR agonists. In this study, we examined the effects of OCA on the development of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice that progressively developed hepatic steatosis and NASH on Western diet (WD). Treatment with OCA effectively prevented chronic inflammation and liver fibrosis in WD-fed MC4R-KO mice with only marginal effect on body weight and hepatic steatosis. Hepatic crown-like structure (hCLS) is a unique histological structure characteristic of NASH, which triggers hepatocyte death-induced interstitial fibrosis. Intriguingly, treatment with OCA markedly reduced hCLS formation even after MC4R-KO mice developed NASH, thereby inhibiting the progression of liver fibrosis. As its mechanism of action, OCA suppressed metabolic stress-induced p53 activation and cell death in hepatocytes. Our findings in this study highlight the role of FXR in hepatocytes in the pathogenesis of NASH. Collectively, this study demonstrates the anti-fibrotic effect of OCA in a murine model of NASH with obesity and insulin resistance, which suggests the clinical implication for human NASH.


Asunto(s)
Muerte Celular/efectos de los fármacos , Ácido Quenodesoxicólico/análogos & derivados , Citoprotección/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Cirrosis Hepática/prevención & control , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Animales , Peso Corporal/efectos de los fármacos , Ácido Quenodesoxicólico/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Técnicas de Inactivación de Genes , Hepatocitos/metabolismo , Resistencia a la Insulina , Cirrosis Hepática/complicaciones , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Obesidad/complicaciones , Receptor de Melanocortina Tipo 4/deficiencia , Receptor de Melanocortina Tipo 4/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
FASEB J ; 32(3): 1452-1467, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29146735

RESUMEN

DNA methylation is an epigenetic mechanism regulating gene expression. In this study, we observed that DNA methyltransferase 3a (Dnmt3a) expression is decreased after muscle atrophy. We made skeletal muscle-specific Dnmt3a-knockout (Dnmt3a-KO) mice. The regeneration capacity after muscle injury was markedly decreased in Dnmt3a-KO mice. Diminished mRNA and protein expression of Dnmt3a were observed in skeletal muscles as well as in satellite cells, which are important for muscle regeneration, in Dnmt3a-KO mice. Dnmt3a-KO satellite cell showed smaller in size (length/area), suggesting suppressed myotube differentiation. Microarray analysis of satellite cells showed that expression of growth differentiation factor 5 (Gdf5) mRNA was markedly increased in Dnmt3a-KO mice. The DNA methylation level of the Gdf5 promoter was markedly decreased in Dnmt3a-KO satellite cells. In addition, DNA methylation inhibitor azacytidine treatment increased Gdf5 expression in wild-type satellite cells, suggesting Gdf5 expression is regulated by DNA methylation. Also, we observed increased inhibitor of differentiation (a target of Gdf5) mRNA expression in Dnmt3a-KO satellite cells. Thus, Dnmt3a appears to regulate satellite cell differentiation via DNA methylation. This mechanism may play a role in the decreased regeneration capacity during atrophy such as in aged sarcopenia.-Hatazawa, Y., Ono, Y., Hirose, Y., Kanai, S., Fujii, N. L., Machida, S., Nishino, I., Shimizu, T., Okano, M., Kamei, Y., Ogawa, Y. Reduced Dnmt3a increases Gdf5 expression with suppressed satellite cell differentiation and impaired skeletal muscle regeneration.


Asunto(s)
Diferenciación Celular , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regulación de la Expresión Génica , Factor 5 de Diferenciación de Crecimiento/biosíntesis , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Animales , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Factor 5 de Diferenciación de Crecimiento/genética , Ratones Noqueados , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/patología
7.
JCI Insight ; 2(22)2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29202448

RESUMEN

Although recent evidence has pointed to the role of organ- and pathogenesis-specific macrophage subsets, it is still unclear which subsets are critically involved in the pathogenesis of nonalcoholic steatohepatitis (NASH). Using melanocortin-4 receptor-deficient (MC4R-KO) mice fed Western diet (WD), which exhibit liver phenotypes similar to those of human NASH, we found a histological structure, termed hepatic crown-like structure (hCLS), in which CD11c+ macrophages surround dead/dying hepatocytes, a prominent feature of NASH. Here, we demonstrate that hCLS-constituting macrophages could be a novel macrophage subset that drives hepatocyte death-triggered liver fibrosis. In an "inducible NASH model," hepatocyte death induces hCLS formation and liver fibrosis sequentially in the short term. In combination with the long-term WD feeding model, we also showed that resident macrophages are a major cellular source of CD11c+ macrophages constituting hCLS, which exhibited gene expression profiles distinct from CD11c- macrophages scattered in the liver. Moreover, depletion of CD11c+ macrophages abolished hCLS formation and fibrogenesis in NASH. Our clinical data suggest the role of CD11c+ macrophages in the disease progression from simple steatosis to NASH. This study sheds light on the role of resident macrophages, in addition to recruited macrophages, in the pathogenesis of NASH.


Asunto(s)
Antígeno CD11c/metabolismo , Hepatocitos/metabolismo , Cirrosis Hepática/patología , Macrófagos/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Antígeno CD11c/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Hígado Graso/patología , Hepatocitos/patología , Humanos , Inflamación , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Receptor de Melanocortina Tipo 4/genética , Receptores CCR2
8.
PLoS One ; 10(3): e0121528, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25816330

RESUMEN

Many attempts have been made to find novel therapeutic strategies for non-alcoholic steatohepatitis (NASH), while their clinical efficacy is unclear. We have recently reported a novel rodent model of NASH using melanocortin 4 receptor-deficient (MC4R-KO) mice, which exhibit the sequence of events that comprise hepatic steatosis, liver fibrosis, and hepatocellular carcinoma with obesity-related phenotypes. In the liver of MC4R-KO mice, there is a unique histological feature termed hepatic crown-like structures (hCLS), where macrophages interact with dead hepatocytes and fibrogenic cells, thereby accelerating inflammation and fibrosis. In this study, we employed MC4R-KO mice to examine the effect of highly purified eicosapentaenoic acid (EPA), a clinically available n-3 polyunsaturated fatty acid, on the development of NASH. EPA treatment markedly prevented the development of hepatocyte injury, hCLS formation and liver fibrosis along with lipid accumulation. EPA treatment was also effective even after MC4R-KO mice developed NASH. Intriguingly, improvement of liver fibrosis was accompanied by the reduction of hCLS formation and plasma kallikrein-mediated transforming growth factor-ß activation. Moreover, EPA treatment increased the otherwise reduced serum concentrations of adiponectin, an adipocytokine with anti-inflammatory and anti-fibrotic properties. Collectively, EPA treatment effectively prevents the development and progression of NASH in MC4R-KO mice along with amelioration of hepatic steatosis. This study unravels a novel anti-fibrotic mechanism of EPA, thereby suggesting a clinical implication for the treatment of NASH.


Asunto(s)
Ácido Eicosapentaenoico/administración & dosificación , Cirrosis Hepática Experimental/prevención & control , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Receptor de Melanocortina Tipo 4/deficiencia , Adipoquinas/sangre , Adiponectina/sangre , Animales , Modelos Animales de Enfermedad , Ácido Eicosapentaenoico/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Cirrosis Hepática Experimental/patología , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología
9.
Cell Rep ; 10(6): 957-967, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25683718

RESUMEN

Ataxia-telangiectasia (A-T) patients occasionally develop diabetes mellitus. However, only limited attempts have been made to gain insight into the molecular mechanism of diabetes mellitus development in A-T patients. We found that Atm-/- mice were insulin resistant and possessed less subcutaneous adipose tissue as well as a lower level of serum adiponectin than Atm+/+ mice. Furthermore, in vitro studies revealed impaired adipocyte differentiation in Atm-/- cells caused by the lack of induction of C/EBPα and PPARγ, crucial transcription factors involved in adipocyte differentiation. Interestingly, ATM was activated by stimuli that induced differentiation, and the binding of ATM to C/EBPß and p300 was involved in the transcriptional regulation of C/EBPα and adipocyte differentiation. Thus, our study sheds light on the poorly understood role of ATM in the pathogenesis of glucose intolerance in A-T patients and provides insight into the role of ATM in glucose metabolism.

10.
Diabetes ; 64(3): 775-84, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25311726

RESUMEN

The metabolic function of the liver changes sequentially during early life in mammals to adapt to the marked changes in nutritional environment. Accordingly, hepatic fatty acid ß-oxidation is activated after birth to produce energy from breast milk lipids. However, how it is induced during the neonatal period is poorly understood. Here we show DNA demethylation and increased mRNA expression of the fatty acid ß-oxidation genes in the postnatal mouse liver. The DNA demethylation does not occur in the fetal mouse liver under the physiologic condition, suggesting that it is specific to the neonatal period. Analysis of mice deficient in the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and maternal administration of a PPARα ligand during the gestation and lactation periods reveal that the DNA demethylation is PPARα dependent. We also find that DNA methylation of the fatty acid ß-oxidation genes are reduced in the adult human liver relative to the fetal liver. This study represents the first demonstration that the ligand-activated PPARα-dependent DNA demethylation regulates the hepatic fatty acid ß-oxidation genes during the neonatal period, thereby highlighting the role of a lipid-sensing nuclear receptor in the gene- and life-stage-specific DNA demethylation of a particular metabolic pathway.


Asunto(s)
Metilación de ADN/genética , Ácidos Grasos/metabolismo , Hígado/metabolismo , PPAR alfa/metabolismo , Animales , Western Blotting , Metilación de ADN/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , PPAR alfa/genética , Triglicéridos/metabolismo
11.
Am J Physiol Endocrinol Metab ; 307(6): E485-93, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25074987

RESUMEN

Skeletal muscle is a reservoir of energy in the form of protein, which is degraded under catabolic conditions, resulting in the formation of amino acids and ammonia as a byproduct. The expression of FOXO1, a forkhead-type transcription factor, increases during starvation and exercise. In agreement, transgenic FOXO1-Tg mice that overexpress FOXO1 in skeletal muscle exhibit muscle atrophy. The aim of this study was to examine the role of FOXO1 in amino acid metabolism. The mRNA and protein expressions of glutamine synthetase (GS) were increased in skeletal muscle of FOXO1-Tg mice. Fasting induced FOXO1 and GS expression in wild-type mice but hardly increased GS expression in muscle-specific FOXO1 knockout (FOXO1-KO) mice. Activation of FOXO1 also increased GS mRNA and protein expression in C2C12 myoblasts. Using a transient transfection reporter assay, we observed that FOXO1 activated the GS reporter construct. Mutation of a putative FOXO1-binding consensus sequence in the downstream genomic region of GS decreased basal and FOXO1-dependent reporter activity significantly. A chromatin immunoprecipitation assay showed that FOXO1 was recruited to the 3' region of GS in C2C12 myoblasts. These results suggest that FOXO1 directly upregulates GS expression. GS is considered to mediate ammonia clearance in skeletal muscle. In agreement, an intravenous ammonia challenge increased blood ammonia concentrations to a twofold higher level in FOXO1-KO than in wild-type mice, demonstrating that the capacity for ammonia disposal correlated inversely with the expression of GS in muscle. These data indicate that FOXO1 plays a role in amino acid metabolism during protein degradation in skeletal muscle.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Amoníaco/metabolismo , Factores de Transcripción Forkhead/fisiología , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Músculo Esquelético/enzimología , Regiones no Traducidas 3'/genética , Aminoácidos/metabolismo , Amoníaco/toxicidad , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Proteína Forkhead Box O1 , Regulación de la Expresión Génica/fisiología , Glutamina/metabolismo , Ratones , Ratones Transgénicos , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transfección
12.
PLoS One ; 8(12): e82163, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349208

RESUMEN

Although macrophages are thought to be crucial for the pathogenesis of chronic inflammatory diseases, how they are involved in disease progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is poorly understood. Here we report the unique histological structure termed "hepatic crown-like structures (hCLS)" in the mouse model of human NASH; melanocortin-4 receptor deficient mice fed a Western diet. In hCLS, CD11c-positive macrophages aggregate to surround hepatocytes with large lipid droplets, which is similar to those described in obese adipose tissue. Histological analysis revealed that hCLS is closely associated with activated fibroblasts and collagen deposition. When treatment with clodronate liposomes effectively depletes macrophages scattered in the liver, with those in hCLS intact, hepatic expression of inflammatory and fibrogenic genes is unaffected, suggesting that hCLS is an important source of inflammation and fibrosis during the progression of NASH. Notably, the number of hCLS is positively correlated with the extent of liver fibrosis. We also observed increased number of hCLS in the liver of non-alcoholic fatty liver disease/NASH patients. Collectively, our data provide evidence that hCLS is involved in the development of hepatic inflammation and fibrosis, thereby suggesting its pathophysiologic role in disease progression from simple steatosis to NASH.


Asunto(s)
Hígado Graso/patología , Hígado/patología , Animales , Enfermedad Crónica , Ácido Clodrónico/farmacología , Femenino , Hepatitis Viral Humana/patología , Humanos , Inflamación/patología , Metabolismo de los Lípidos/efectos de los fármacos , Liposomas/metabolismo , Hígado/efectos de los fármacos , Hígado/ultraestructura , Cirrosis Hepática/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico , Fenotipo , Receptor de Melanocortina Tipo 4/metabolismo
13.
Diabetes ; 61(10): 2442-50, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22721968

RESUMEN

The liver is a major organ of lipid metabolism, which is markedly changed in response to physiological nutritional demand; however, the regulation of hepatic lipogenic gene expression in early life is largely unknown. In this study, we show that expression of glycerol-3-phosphate acyltransferase 1 (GPAT1; Gpam), a rate-limiting enzyme of triglyceride biosynthesis, is regulated in the mouse liver by DNA methylation, an epigenetic modification involved in the regulation of a diverse range of biological processes in mammals. In the neonatal liver, DNA methylation of the Gpam promoter, which is likely to be induced by Dnmt3b, inhibited recruitment of the lipogenic transcription factor sterol regulatory element-binding protein-1c (SREBP-1c), whereas in the adult, decreased DNA methylation resulted in active chromatin conformation, allowing recruitment of SREBP-1c. Maternal overnutrition causes decreased Gpam promoter methylation with increased GPAT1 expression and triglyceride content in the pup liver, suggesting that environmental factors such as nutritional conditions can affect DNA methylation in the liver. This study is the first detailed analysis of the DNA-methylation-dependent regulation of the triglyceride biosynthesis gene Gpam, thereby providing new insight into the molecular mechanism underlying the epigenetic regulation of metabolic genes and thus metabolic diseases.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Células 3T3 , Animales , Animales Recién Nacidos , Cromatina/genética , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Hepatocitos/citología , Hepatocitos/metabolismo , Ratones , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , ADN Metiltransferasa 3B
14.
PLoS One ; 6(5): e20467, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21655215

RESUMEN

BACKGROUND: Retinoid X receptor (RXR) γ is a nuclear receptor-type transcription factor expressed mostly in skeletal muscle, and regulated by nutritional conditions. Previously, we established transgenic mice overexpressing RXRγ in skeletal muscle (RXRγ mice), which showed lower blood glucose than the control mice. Here we investigated their glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: RXRγ mice were subjected to glucose and insulin tolerance tests, and glucose transporter expression levels, hyperinsulinemic-euglycemic clamp and glucose uptake were analyzed. Microarray and bioinformatics analyses were done. The glucose tolerance test revealed higher glucose disposal in RXRγ mice than in control mice, but insulin tolerance test revealed no difference in the insulin-induced hypoglycemic response. In the hyperinsulinemic-euglycemic clamp study, the basal glucose disposal rate was higher in RXRγ mice than in control mice, indicating an insulin-independent increase in glucose uptake. There was no difference in the rate of glucose infusion needed to maintain euglycemia (glucose infusion rate) between the RXRγ and control mice, which is consistent with the result of the insulin tolerance test. Skeletal muscle from RXRγ mice showed increased Glut1 expression, with increased glucose uptake, in an insulin-independent manner. Moreover, we performed in vivo luciferase reporter analysis using Glut1 promoter (Glut1-Luc). Combination of RXRγ and PPARδ resulted in an increase in Glut1-Luc activity in skeletal muscle in vivo. Microarray data showed that RXRγ overexpression increased a diverse set of genes, including glucose metabolism genes, whose promoter contained putative PPAR-binding motifs. CONCLUSIONS/SIGNIFICANCE: Systemic glucose metabolism was increased in transgenic mice overexpressing RXRγ. The enhanced glucose tolerance in RXRγ mice may be mediated at least in part by increased Glut1 in skeletal muscle. These results show the importance of skeletal muscle gene regulation in systemic glucose metabolism. Increasing RXRγ expression may be a novel therapeutic strategy against type 2 diabetes.


Asunto(s)
Glucosa/metabolismo , Músculo Esquelético/metabolismo , Receptor gamma X Retinoide/metabolismo , Animales , Sitios de Unión , Electroporación , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Glucógeno/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Receptor gamma X Retinoide/genética
15.
Biochem J ; 427(1): 171-8, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20088826

RESUMEN

FOXO1 (forkhead box O1), a forkhead-type transcription factor whose gene expression is up-regulated in the skeletal muscle during starvation, appears to be a key molecule of energy metabolism and skeletal muscle atrophy. Cathepsin L, a lysosomal proteinase whose expression is also up-regulated in the skeletal muscle during starvation, is induced in transgenic mice overexpressing FOXO1 relative to wild-type littermates. In the present study, we conducted in vivo and in vitro experiments focusing on FOXO1 regulation of Ctsl (cathepsin L gene; CTSL1 in humans) expression in the skeletal muscle. During fasting and refeeding of C57BL/6 mice, Ctsl was regulated in parallel with FOXO1 in the skeletal muscle. Fasting-induced Ctsl expression was attenuated in transgenic mice overexpressing a dominant-negative form of FOXO1 or in skeletal-muscle-specific Foxo1-knockout mice relative to respective wild-type controls. Using C2C12 mouse myoblasts overexpressing a constitutively active form of FOXO1, we showed that FOXO1 induces Ctsl expression. Moreover, we found FOXO1-binding sites in both the mouse Ctsl and human CTSL1 promoters. The luciferase reporter analysis revealed that the mouse Ctsl and human CTSL1 promoters are activated by FOXO1, which is abolished by mutations in the consensus FOXO1-binding sites. Gel mobility-shift and chromatin immunoprecipiation assays showed that FOXO1 is recruited and binds to the Ctsl promoter. The present study provides in vivo and in vitro evidence that Ctsl is a direct target of FOXO1 in the skeletal muscle, thereby suggesting a role for the FOXO1/cathepsin L pathway in fasting-induced skeletal muscle metabolic change and atrophy.


Asunto(s)
Catepsina L/fisiología , Factores de Transcripción Forkhead/fisiología , Regulación de la Expresión Génica , Músculo Esquelético/metabolismo , Animales , Sitios de Unión , Western Blotting , Células Cultivadas , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Femenino , Proteína Forkhead Box O1 , Humanos , Luciferasas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Músculo Esquelético/citología , Mioblastos/metabolismo , Regiones Promotoras Genéticas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Obesity (Silver Spring) ; 18(2): 314-21, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19680236

RESUMEN

Epigenetic mechanisms are likely to be involved in the development of obesity. This study was designed to examine the role of a DNA methyltransferase (Dnmt3a), in obese adipose tissue. The gene expression of Dnmts was examined by quantitative real-time PCR analysis. Transgenic mice overexpressing Dnmt3a in the adipose tissue driven by the aP2 promoter were created (Dnmt3a mice). DNA methylation of downregulated genes was examined using bisulfite DNA methylation analysis. Dnmt3a mice were fed a methyl-supplemented or high-fat diet, and subjected to body weight measurement and gene expression analysis of the adipose tissue. Expression of Dnmt3a was markedly upregulated in the adipose tissue of obese mice. The complementary DNA (cDNA) microarray analysis of Dnmt3a mice revealed a slight decrease in the gene expression of secreted frizzled-related protein 1 (SFRP1) and marked increase in that of interferon responsive factor 9 (IRF9). In the SFRP1 promoter, DNA methylation was not markedly increased in Dnmt3a mice relative to wild-type mice. In experiments with a high-fat diet or methyl-supplemented diet, body weight did not differ significantly with the genotypes. Gene expression levels of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and monocyte chemoattractant protein-1 (MCP-1) were higher in Dnmt3a mice than in wild-type mice on a high-fat diet. This study suggests that increased expression of Dnmt3a in the adipose tissue may contribute to obesity-related inflammation. The data highlight the potential role of Dnmt3a in the adult tissue as well as in the developing embryo and cancer.


Asunto(s)
Tejido Adiposo/enzimología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Obesidad/enzimología , Tejido Adiposo/patología , Animales , Células Cultivadas , Quimiocina CCL2/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Grasas de la Dieta/efectos adversos , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos/genética , Perfilación de la Expresión Génica/métodos , Genotipo , Mediadores de Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Obesidad/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Factor de Necrosis Tumoral alfa/genética , Regulación hacia Arriba
17.
Endocrinology ; 149(5): 2293-305, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18202130

RESUMEN

Sterol regulatory element binding protein 1c (SREBP1c) is a master regulator of lipogenic gene expression in liver and adipose tissue, where its expression is regulated by a heterodimer of nuclear receptor-type transcription factors retinoid X receptor-alpha (RXRalpha) and liver X receptor-alpha (LXRalpha). Despite the potential importance of SREBP1c in skeletal muscle, little is known about the regulation of SREBP1c in that setting. Here we report that gene expression of RXRgamma is markedly decreased by fasting and is restored by refeeding in mouse skeletal muscle, in parallel with changes in gene expression of SREBP1c. RXRgamma or RXRalpha, together with LXRalpha, activate the SREBP1c promoter in vitro. Moreover, transgenic mice overexpressing RXRgamma specifically in skeletal muscle showed increased gene expression of SREBP1c with increased triglyceride content in their skeletal muscles. In contrast, transgenic mice overexpressing the dominant-negative form of RXRgamma showed decreased SREBP1c gene expression. The expression of Forkhead-O1 transcription factor (FOXO1), which can suppress the function of multiple nuclear receptors, is negatively correlated to that of SREBP1c in skeletal muscle during nutritional change. Moreover, transgenic mice overexpressing FOXO1 specifically in skeletal muscle exhibited decreased gene expression of both RXRgamma and SREBP1c. In addition, FOXO1 suppressed RXRalpha/LXRalpha-mediated SREBP1c promoter activity in vitro. These findings provide in vivo and in vitro evidence that RXR/LXR up-regulates SREBP1c gene expression and that FOXO1 antagonizes this effect of RXR/LXR in skeletal muscle.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Factores de Transcripción Forkhead/fisiología , Músculo Esquelético/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Receptor gamma X Retinoide/fisiología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Animales , Secuencia de Bases , Células Cultivadas , Ingestión de Alimentos/fisiología , Ayuno/metabolismo , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Humanos , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Especificidad de Órganos , Receptores Nucleares Huérfanos , Regiones Promotoras Genéticas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...