Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Development ; 150(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078652

RESUMEN

Since the discovery of endothelin 1 (EDN1) in 1988, the role of endothelin ligands and their receptors in the regulation of blood pressure in normal and disease states has been extensively studied. However, endothelin signaling also plays crucial roles in the development of neural crest cell-derived tissues. Mechanisms of endothelin action during neural crest cell maturation have been deciphered using a variety of in vivo and in vitro approaches, with these studies elucidating the basis of human syndromes involving developmental differences resulting from altered endothelin signaling. In this Review, we describe the endothelin pathway and its functions during the development of neural crest-derived tissues. We also summarize how dysregulated endothelin signaling causes developmental differences and how this knowledge may lead to potential treatments for individuals with gene variants in the endothelin pathway.


Asunto(s)
Endotelina-1 , Endotelinas , Humanos , Endotelinas/metabolismo , Endotelina-1/genética , Endotelina-1/metabolismo , Transducción de Señal/fisiología , Cresta Neural/metabolismo
2.
Dis Model Mech ; 15(4)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35284927

RESUMEN

Auriculocondylar syndrome 2 (ARCND2) is a rare autosomal dominant craniofacial malformation syndrome linked to multiple genetic variants in the coding sequence of phospholipase C ß4 (PLCB4). PLCB4 is a direct signaling effector of the endothelin receptor type A (EDNRA)-Gq/11 pathway, which establishes the identity of neural crest cells (NCCs) that form lower jaw and middle ear structures. However, the functional consequences of PLCB4 variants on EDNRA signaling is not known. Here, we show, using multiple signaling reporter assays, that known PLCB4 variants resulting from missense mutations exert a dominant-negative interference over EDNRA signaling. In addition, using CRISPR/Cas9, we find that F0 mouse embryos modeling one PLCB4 variant have facial defects recapitulating those observed in hypomorphic Ednra mouse models, including a bone that we identify as an atavistic change in the posterior palate/oral cavity. Remarkably, we have identified a similar osseous phenotype in a child with ARCND2. Our results identify the disease mechanism of ARCND2, demonstrate that the PLCB4 variants cause craniofacial differences and illustrate how minor changes in signaling within NCCs may have driven evolutionary changes in jaw structure and function. This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Enfermedades del Oído , Animales , Oído/anomalías , Enfermedades del Oído/genética , Humanos , Ratones , Cresta Neural , Fenotipo , Fosfolipasa C beta/genética
3.
Development ; 148(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34383890

RESUMEN

Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.


Asunto(s)
Tipificación del Cuerpo , Cara/embriología , Factor de Transcripción GATA3/metabolismo , Animales , Región Branquial/citología , Región Branquial/embriología , Región Branquial/metabolismo , Muerte Celular , Proliferación Celular , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Embrión de Mamíferos , Factor de Transcripción GATA3/genética , Regulación del Desarrollo de la Expresión Génica , Mandíbula/citología , Mandíbula/embriología , Maxilar/citología , Maxilar/embriología , Ratones , Morfogénesis , Cresta Neural/citología , Cresta Neural/embriología , Cresta Neural/metabolismo
4.
Am J Med Genet A ; 182(5): 1104-1116, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32133772

RESUMEN

Craniofacial morphogenesis is regulated in part by signaling from the Endothelin receptor type A (EDNRA). Pathogenic variants in EDNRA signaling pathway components EDNRA, GNAI3, PCLB4, and EDN1 cause Mandibulofacial Dysostosis with Alopecia (MFDA), Auriculocondylar syndrome (ARCND) 1, 2, and 3, respectively. However, cardiovascular development is normal in MFDA and ARCND individuals, unlike Ednra knockout mice. One explanation may be that partial EDNRA signaling remains in MFDA and ARCND, as mice with reduced, but not absent, EDNRA signaling also lack a cardiovascular phenotype. Here we report an individual with craniofacial and cardiovascular malformations mimicking the Ednra -/- mouse phenotype, including a distinctive micrognathia with microstomia and a hypoplastic aortic arch. Exome sequencing found a novel homozygous missense variant in EDNRA (c.1142A>C; p.Q381P). Bioluminescence resonance energy transfer assays revealed that this amino acid substitution in helix 8 of EDNRA prevents recruitment of G proteins to the receptor, abrogating subsequent receptor activation by its ligand, Endothelin-1. This homozygous variant is thus the first reported loss-of-function EDNRA allele, resulting in a syndrome we have named Oro-Oto-Cardiac Syndrome. Further, our results illustrate that EDNRA signaling is required for both normal human craniofacial and cardiovascular development, and that limited EDNRA signaling is likely retained in ARCND and MFDA individuals. This work illustrates a straightforward approach to identifying the functional consequence of novel genetic variants in signaling molecules associated with malformation syndromes.


Asunto(s)
Anomalías Craneofaciales/genética , Enfermedades del Oído/genética , Oído/anomalías , Predisposición Genética a la Enfermedad , Disostosis Mandibulofacial/genética , Receptor de Endotelina A/genética , Animales , Anomalías Craneofaciales/fisiopatología , Oído/fisiopatología , Enfermedades del Oído/fisiopatología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Mutación con Pérdida de Función/genética , Disostosis Mandibulofacial/fisiopatología , Ratones , Ratones Noqueados , Morfogénesis/genética , Cresta Neural/crecimiento & desarrollo , Cresta Neural/patología , Fenotipo , Transducción de Señal/genética
5.
Sci Signal ; 11(546)2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181242

RESUMEN

Constitutively active G protein α subunits cause cancer, cholera, Sturge-Weber syndrome, and other disorders. Therapeutic intervention by targeted inhibition of constitutively active Gα subunits in these disorders has yet to be achieved. We found that constitutively active Gαq in uveal melanoma (UM) cells was inhibited by the cyclic depsipeptide FR900359 (FR). FR allosterically inhibited guanosine diphosphate-for-guanosine triphosphate (GDP/GTP) exchange to trap constitutively active Gαq in inactive, GDP-bound Gαßγ heterotrimers. Allosteric inhibition of other Gα subunits was achieved by the introduction of an FR-binding site. In UM cells driven by constitutively active Gαq, FR inhibited second messenger signaling, arrested cell proliferation, reinstated melanocytic differentiation, and stimulated apoptosis. In contrast, FR had no effect on BRAF-driven UM cells. FR promoted UM cell differentiation by reactivating polycomb repressive complex 2 (PRC2)-mediated gene silencing, a heretofore unrecognized effector system of constitutively active Gαq in UM. Constitutively active Gαq and PRC2 therefore provide therapeutic targets for UM. The development of FR analogs specific for other Gα subunit subtypes may provide novel therapeutic approaches for diseases driven by constitutively active Gα subunits or multiple G protein-coupled receptors (GPCRs) where targeting a single receptor is ineffective.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Neoplasias/metabolismo , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Depsipéptidos/farmacología , Subunidades alfa de la Proteína de Unión al GTP/antagonistas & inhibidores , Células HEK293 , Humanos , Ratones , Neoplasias/patología , Transducción de Señal/efectos de los fármacos
6.
J Biol Chem ; 292(47): 19266-19278, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28974581

RESUMEN

Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the Gq/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of Gq/11-evoked Ca2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of Gq/11-coupled receptor signaling in the cardiovascular, immune, and nervous systems.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Arterias Mesentéricas/fisiología , Contracción Muscular/fisiología , Proteínas RGS/fisiología , Animales , Células Cultivadas , Masculino , Arterias Mesentéricas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica , Proteolisis , Transducción de Señal
7.
J Biol Chem ; 292(24): 9906-9918, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28432124

RESUMEN

The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gß5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of Gi/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated Gi/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα13·R7-RGS complexes. Because Gα13/R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gß5 with or without R7BP. We found that neurite retraction evoked by Gα12/13-dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα12/13 but not Gαi/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function.


Asunto(s)
Encéfalo/metabolismo , Proteínas Portadoras/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuritas/metabolismo , Neuronas/metabolismo , Proteínas RGS/metabolismo , Sustitución de Aminoácidos , Animales , Encéfalo/citología , Encéfalo/enzimología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Subunidades alfa de la Proteína de Unión al GTP G12-G13/química , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuritas/enzimología , Neuronas/citología , Neuronas/enzimología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas RGS/química , Proteínas RGS/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...