Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38963622

RESUMEN

This study reports the production of biochar adsorbents from two major crop residues (i.e., rice and wheat straw) to remove naphthenic acids from water. The alkali treatment approach was used for biochar activation that resulted in a tremendous increase in their surface area, i.e., up to 2252 and 2314 m2/g, respectively, for rice and wheat straw biochars. Benzoic acid was used as a model compound to optimize critical adsorption parameters. Its maximum monolayer adsorption capacity of 459.55 and 357.64 mg/g was achieved for activated rice and wheat straw biochars. The adsorption of benzoic acid was exothermic (∆H° = - 7.06 and - 3.89 kJ/mol) and identified possibly as physisorption (Gibbs free energy ranges 3.5-4.0 kJ/mol). The kinetic study suggested that adsorption follows pseudo-second-order kinetics with qe2 for rice straw and wheat straw-derived adsorbents at 200 and 194 mg/g, respectively. As adsorbent, the recyclability of activated biochars was noticed with no significant loss in their efficiency for up to ten successive regeneration cycles. The adsorption results were validated using a commercial naphthenic acid mixture-spiked river water and paper/pulp industrial effluent. The activated rice and wheat straw biochars exhibited excellent adsorption efficiency of 130.3 and 74.6 mg/g, respectively. The naphthenic acid adsorption on biochar surface was due to various interactions, i.e., weak van der Waal's, pore filling, π-π stacking, and ionic interactions. This study offers a cost-effective and eco-friendly approach to valorizing agricultural residues for pollutant removal from industrial wastewater, including petroleum refineries.

2.
Biodegradation ; 35(3): 299-313, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37792261

RESUMEN

The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2-4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L-1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d-1, 0.10 d-1, 0.08 d-1, and 0.07 d-1 and half-life t 1 / 2  of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.


Asunto(s)
Antracenos , Contaminantes Ambientales , Naftalenos , Hidrocarburos Policíclicos Aromáticos , Pirenos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/metabolismo , Consorcios Microbianos , Fluorenos/toxicidad , Biodegradación Ambiental , Contaminantes del Suelo/metabolismo
3.
J Chromatogr A ; 1713: 464525, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38000198

RESUMEN

Lubricating oils help an internal combustion engine function effectively by reducing friction and wear on the engine's moving parts. They typically consist of petroleum-derived base oil and various additives to achieve the desired characteristics in automotive engine oils. Determination of aromatics and polar additives in the finished and used lubricating oils is not possible with existing methods hence their development is significant from the perspectives of environment and reuse/re-refining of used lubricating oils. This study reports the development of a new HPLC method to determine additives in the finished lubricating oils and/or polars in the used engine oils. The proposed method is simple, fast (runtime of 13 min), does not require sample pre-treatment, and exhibits high precision and superior limits of detection and quantification. The method demonstrated good linear response ranging from 0.1 to 30 mass for total aromatics and 0.1 to 20 % for additives. The method validation was carried out by analyzing brand-new commercial two and four-wheeler lubricants with used automotive lubricants. Based on the proposed method, the aromatics and additives concentration ranges in the studied finished lubricants were estimated between 0.20-1.70 % (mass) and 0.20-3.50 % (mass), respectively. Similarly, for used lubricants, the aromatics and additives were estimated to be 1.00-6.10 % and 0.60-2.40 % (mass), respectively.


Asunto(s)
Hidrocarburos Aromáticos , Petróleo , Cromatografía Líquida de Alta Presión , Aceites , Petróleo/análisis , Lubricantes/análisis , Lubricantes/química
4.
Indian J Microbiol ; 63(1): 159, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37179579

RESUMEN

[This corrects the article DOI: 10.1007/s12088-021-00928-4.].

5.
Environ Res ; 231(Pt 2): 116224, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37224942

RESUMEN

Global concern about petroleum hydrocarbon pollution has intensified and gained scientific interest due to its noxious nature, high persistence in environmental matrices, and low degradability. One way to address this is by combining remediation techniques that could overcome the constraints of traditional physio-chemical and biological remediation strategies. The upgraded concept of bioremediation to nano-bioremediation in this direction offers an efficient, economical, and eco-friendly approach to mitigate petroleum contaminants. Here, we review the unique attributes of different types of nanoparticles and their synthesis procedures in remediating various petroleum pollutants. This review also highlights the microbial interaction with different metallic nanoparticles and their consequential alteration in microbial as well as enzymatic activity which expedites the remediating process. Besides, the latter part of the review explores the application of petroleum hydrocarbon degradation and the application of nano supports as immobilizing agents for microbes and enzymes. Further, the challenges and the future prospects of nano-bioremediation have also been discussed.


Asunto(s)
Contaminantes Ambientales , Contaminación por Petróleo , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Petróleo/metabolismo , Hidrocarburos , Microbiología del Suelo
7.
Environ Res ; 216(Pt 2): 114511, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36265600

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the ecosystem and are of significant concern due to their toxicity and mutagenicity. Bioremediation of PAHs is a popular and benign approach that ameliorates the environment. This study investigated the biodegradation and proteome response of Pseudomonas aeruginosa IIPIS-8 for two-ringed PAH: naphthalene (NAP) to understand proteome alteration during its bioremediation. Rapid biodegradation was observed up to 98 ± 1.26% and 84 ± 1.03%, respectively, for initial concentrations of 100 mg L-1 and 500 mg L-1 of NAP. Degradation followed first-order kinetics with rate constants of 0.12 h-1 and 0.06 h-1 and half-life (t1/2) of 5.7 h and 11.3 h, respectively. Additionally, the occurrence of key ring cleavage and linear chain intermediates, 2,3,4,5,6, -pentamethyl acetophenone, 1-octanol 2-butyl, and hexadecanoic acid supported complete NAP degradation. Proteomics study of IIPIS-8 throws light on the impact of protein expression, in which 415 proteins were quantified in sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) analysis, of which 97 were found to be significantly up-regulated and 75 were significantly down-regulated by ≥ 2-fold change (p values ≤ 0.05), during the NAP degradation. The study also listed the up-regulation of several enzymes, including oxido-reductases, hydrolases, and catalases, potentially involved in NAP degradation. Overall, differential protein expression, through proteomics study, demonstrated IIPIS-8's capability to efficiently assimilate NAP in their metabolic pathways even in a high concentration of NAP.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Pseudomonas aeruginosa , Proteómica , Proteoma , Ecosistema , Hidrocarburos Policíclicos Aromáticos/metabolismo , Naftalenos/toxicidad , Biodegradación Ambiental
8.
Environ Sci Pollut Res Int ; 29(29): 44135-44147, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35122201

RESUMEN

The rapid pace of economic development has resulted in the release of several polycyclic aromatic hydrocarbons (PAHs) into the environment. Microbial degradation using white-rot fungi is a promising method for the removal of PAHs from the environment. In the present study, biodegradation of recalcitrant PAH by a white-rot fungus, Trametes maxima IIPLC-32, was investigated using pyrene. The pyrene concentration decreased by 79.80%, 65.37%, and 56.37% within 16 days from the initial levels of 10 mg L-1, 25 mg L-1, and 50 mg L-1, respectively. Gas chromatographic-mass spectrometric identification of prominent metabolites 1-hydroxypyrene, 2-methyl-1-naphthyl acetic acid, di-n-butyl phthalate, and diethyl phthalate helped in determining the pyrene degradation pathway. The presence of 81 extracellular proteins was revealed by secretome analysis. The identified proteins up-regulated in response to pyrene degradation were classified into detoxification proteins (6.12%), redox proteins (6.12%), stress proteins (4.08%), metabolic-related proteins (26.53%), translation and transcriptional proteins (49%), catalytic proteins (49%), and other proteins (8.16%). Knowledge of secretome analysis in pyrene degradation helped to understand the degradation mechanism of pyrene. Also, the study suggests that T. maxima IIPLC-32 has the potential to be used in the bioremediation of PAH contaminated aquatic environment.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Trametes , Biodegradación Ambiental , Hidrocarburos Policíclicos Aromáticos/metabolismo , Polyporaceae , Pirenos/metabolismo , Secretoma , Trametes/metabolismo
9.
Bioresour Technol ; 343: 126121, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34653630

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants with widespread and well-recognized health concerns. Amidst more than a hundred known PAHs, 16 are categorized as priority pollutants. Use of widely diverse biological machinery comprising bacteria, fungi, and algae harnessed from contaminated sites has emerged as an ecologically safe and sustainable approach for PAH degradation. The potential of these biological systems has been thoroughly examined to maximize the degradation of specific PAHs by understanding their detailed biochemical pathways, enzymatic system, and gene organization. Recent advancements in microbial genetic engineering and metabolomics using modern analytical tools have facilitated the bioremediation of such xenobiotics. This review explores the role of microbes, their biochemical pathways, genetic regulation of metabolic pathways, and the effect of biosurfactants against the backdrop of PAH substrate structures.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Bacterias/genética , Biodegradación Ambiental , Hongos
10.
Indian J Microbiol ; 61(3): 250-261, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34294990

RESUMEN

There is an upsurge in industrial production to meet the rising demands of the rapidly growing population globally. The enormous energy demand of the growing economies still depends upon petroleum. It has also resulted in environmental pollution due to the release of petroleum origin pollutants. Soil and aquifers, especially in the direct impact zones of petroleum refineries, are the worst hit. The integrated concept of bioremediation and resource recovery offers a sustainable solution to mitigate environmental pollution. It involves biodegradation, a benign utilization of toxic wastes, and the recycling of natural resources. Bioremediation is considered an integral contributor to the emerging concepts of bio-economy and sustainable development goals. This review article aims to provide an updated overview of bioremediation involving petroleum-based contaminants. Microbial degradation is discussed as a promising strategy for petroleum refinery effluent and sludge treatment. The review also provides an insight into resource reuse and recovery as a holistic approach towards sustainable refinery waste treatment. Furthermore, the integrated technologies that deserve in-depth exploration for future study in the refinery sector are highlighted in the present study.

11.
Environ Pollut ; 268(Pt A): 115827, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33096462

RESUMEN

The present study explores the immobilization of ligninolytic enzyme-laccase on the surface of rice straw biochar and evaluates its application for anthracene biodegradation. The rice straw biochar was acid-treated to generate carboxyl functionality on its surface, followed by detailed morphological and chemical characterization. The surface area of functionalized biochar displayed a two-fold increase compared to the untreated biochar. Laccase was immobilized on functionalized biochar, and an immobilization yield of 66% was obtained. The immobilized enzyme demonstrated operational stability up to six cycles while retaining 40% of the initial activity. Laccase immobilization was further investigated by performing adsorption and kinetic studies, which revealed the highest immobilization concentration of 500 U g-1 at 25 °C. The adsorption followed the Langmuir isotherm model at equilibrium, and the kinetic study confirmed pseudo-second-order kinetics. The equilibrium rate constant (K2) at 25 °C and 4 °C were 3.6 × 10-3 g U-1 min-1 and 4 × 10-3 g U-1 min-1 respectively for 100 U g-1 of enzyme loading. This immobilized system was applied for anthracene degradation in the aqueous batch mode, which resulted in complete degradation of 50 mg L-1 anthracene within 24 h of interaction exposure.


Asunto(s)
Lacasa , Oryza , Adsorción , Antracenos , Carbón Orgánico , Concentración de Iones de Hidrógeno , Cinética , Lacasa/metabolismo , Oryza/metabolismo
12.
J Chromatogr A ; 1629: 461512, 2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-32882613

RESUMEN

This study reports a simple and convenient analytical method for the simultaneous determination of biodiesel and vegetable oils or used cooking oils in petrodiesel and green diesel (hydrotreated vegetable oils or paraffinic diesel). The approach is based on normal-phase high-performance liquid chromatography with refractive index detection. It employed silica stationary phase, n-hexane mobile phase with isopropanol modifier to achieve optimum separation between hydrocarbons (petrodiesel or green diesel), fatty acid methyl esters (biodiesel) and triglycerides (vegetable oils and used cooking oil). In addition to determining vegetable oils or used cooking oils as adulterants in diesel, this method is also proposed as a better alternative to the standard method ASTM D7371, which is currently recommended for determining fatty acid methyl esters in petrodiesel. The method development involved screening of various stationary and mobile phases, with and without modifiers, to achieve acceptable chromatographic resolutions between analytes. Under the optimized method conditions, silica column, and n-hexane containing 0.6% isopropanol as the mobile phase provided the best results. The real-world scenario was simulated for the method validation carried out by fortifying Jatropha seed oil, soybean oil, and used cooking oil in the biodiesel blended petrodiesel and green diesel. Measurement of all analytes was accompanied by high precision, low limit of detection/quantification and linear response range of 0.05 to 50% for biodiesel, and 0.05 to 30% for vegetable oils. The proposed method is simple, fast (runtime 7 min), and does not require sample pre-treatment and backflushing.


Asunto(s)
Biocombustibles/análisis , Cromatografía Líquida de Alta Presión/métodos , Aceites de Plantas/análisis , Gasolina/análisis , Hidrocarburos/análisis , Hidrocarburos/aislamiento & purificación , Aceites de Plantas/química , Aceite de Soja/análisis , Triglicéridos/aislamiento & purificación
13.
Springerplus ; 3: 691, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26034686

RESUMEN

Single cell oil production from sugarcane bagasse hydrolysate by oleaginous yeast Rhodotorula sp. IIP-33 was analyzed using a two stage statistical design approach based on Response Surface Methodology. Variables like pentose sugar, (NH4)2SO4, KH2PO4, yeast extract, pH and temperature were found to influence lipid production significantly. Under optimized condition in a shake flask, yield of lipid was 2.1199 g with fat coefficient of 7.09 which also resembled ~99% similarity to model predicted lipid production. In this paper we are presenting optimized results for production of non polar lipid which could be later deoxygenated into hydrocarbon. A qualitative analyses of selective lipid samples yielded a varying distribution of free acid ranging from C6 to C18, majoring C16:0, C18:0 and C18:1 under different fermentation conditions.

14.
Talanta ; 86: 248-55, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22063538

RESUMEN

The multi-walled carbon nano-tubes (MWCNT) were magnetized with iron oxide nanoparticles and were characterized by SEM and EDX analyses. These magnetized MWCNT (Mag-CNT) were used as sorbent in dispersive solid phase extraction (DSPE) mode to extract nerve agents and their markers. Mag-CNT were dispersed in water and collected with the help of an external magnet. From Mag-CNT, the adsorbed analytes were eluted and analyzed by GC-FPD in phosphorus mode. DSPE was found to be advantageous over conventional solid phase extraction (SPE) in terms of operational simplicity, speed, handling of large sample volume and recoveries. Extraction parameters such as eluting solvent, sorbent amount, pH and salinity of aqueous samples were optimized. Optimized extraction conditions included 40 mg of Mag-CNT as sorbent, chloroform as eluent, pH 3-11 and salinity 20%. Under the optimized conditions, recoveries from distilled water ranged from 60 to 96% and were comparable in tap and muddy water. Limits of quantification and limits of detection of 0.15 ng/ml and 0.05 ng/ml, respectively, were achieved. Superiority of Mag-CNT over conventional C(18) SPE was also established.


Asunto(s)
Sustancias para la Guerra Química/análisis , Nanotubos de Carbono/química , Extracción en Fase Sólida/métodos , Agua/análisis , Fenómenos Magnéticos
15.
J Chromatogr A ; 1218(52): 9307-13, 2011 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-22119612

RESUMEN

Extraction, enrichment and gas chromatography mass spectrometric analysis of degradation products of nerve agents from water is of significant importance for verification of Chemical Weapons Convention (CWC) and gathering forensic evidence of use of nerve agents. Multi-walled carbon nanotubes (MWCNTs) were non-covalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) to afford the cationic functionalized nano-tubes, which were used as solid-phase anionic-exchanger sorbents to extract the acidic degradation products of nerve agents from water. Extraction efficiencies of MWCNTs-PDDA were compared with those of mixed mode anion-exchange (HLB) and silica based strong anion-exchange (Si-SAX) cartridges. Optimized extraction parameters included MWCNTs-PDDA 12 mg, washing solvent 5 mL water and eluting solvent 3 mL of 0.1M aqueous HCl followed by 3 mL methanol. At 1 ng mL(-1) spiking concentration of mono- and di-basic phosphonic acids, MWCNTs-PDDA exhibited higher extraction efficiencies in comparison to Si-SAX and HLB. The limits of detection were achieved down to 0.05 and 0.11 ng mL(-1) in selected ion and full scan monitoring mode respectively; and limits of quantification in selected ion monitoring mode were achieved down to 0.21 ng mL(-1).


Asunto(s)
Sustancias para la Guerra Química/química , Electrólitos/química , Nanotubos de Carbono/química , Organofosfonatos/química , Extracción en Fase Sólida/métodos , Adsorción , Aminopiridinas/química , Sustancias para la Guerra Química/aislamiento & purificación , Cromatografía por Intercambio Iónico , Cromatografía de Gases y Espectrometría de Masas , Iones/química , Límite de Detección , Organofosfonatos/aislamiento & purificación , Polietilenos/química , Compuestos de Amonio Cuaternario/química , Sulfonamidas/química , Agua
16.
J Chromatogr A ; 1218(38): 6612-20, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21862029

RESUMEN

Selective extraction and enrichment of nerve agent degradation products has been achieved using zirconia based commercial solid-phase extraction cartridges. Target analytes were O-alkyl alkylphosphonic acids and alkylphosphonic acids, the environmental markers of nerve agents such as sarin, soman and VX. Critical extraction parameters such as modifier concentration, nature and volume of washing and eluting solvents were investigated. Amongst other anionic compounds, selectivity in extraction was observed for organophosphorus compounds. Recoveries of analytes were determined by GC-MS which ranged from 80% to 115%. Comparison of zirconia based solid-phase extraction method with anion-exchange solid-phase extraction revealed its selectivity towards phosphonic acids. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes were achieved down to 4.3 and 8.5 ng mL(-1), respectively, in selected ion monitoring mode.


Asunto(s)
Sustancias para la Guerra Química/aislamiento & purificación , Neurotransmisores/aislamiento & purificación , Compuestos Organofosforados/aislamiento & purificación , Extracción en Fase Sólida/métodos , Circonio/química , Adsorción , Sustancias para la Guerra Química/química , Neurotransmisores/química , Compuestos Organofosforados/química , Sarín/química , Sarín/aislamiento & purificación , Sensibilidad y Especificidad , Extracción en Fase Sólida/instrumentación , Soman/química , Soman/aislamiento & purificación
17.
Artículo en Inglés | MEDLINE | ID: mdl-21625030

RESUMEN

Gas chromatography-mass spectrometry (GC-MS) analysis of O,O'-dialkyl methylphosphonites (DAMPs) was carried out with a view to developing a database and understanding the mechanism of fragmentation. DAMPs are included in the list of schedule 2B4 chemicals of the Chemical Weapons Convention. GC-MS analysis of DAMPs and their deuterated analogs revealed that their fragmentations were dominated by α-cleavages, alkenyl radical loss and hydrogen rearrangements. Based on fragment ions of deuterated analogs and density functional theory calculations, the fragmentation routes were rationalized.

18.
J Sep Sci ; 33(23-24): 3726-33, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21140417

RESUMEN

Optimization of extraction and enrichment parameters of chemical warfare agents and their related chemicals from water are presented using multiwalled carbon nanotubes (MWCNTs) as solid-phase extractant. Selected analytes were O,O'-dialkyl alkylphosphonates, nerve agent and mustards. Extraction parameters, including sample volume, nature and volume of washing and eluting solvent, were optimized. Recoveries of analytes were determined by GC-MS and ranged from 81 to 104%. A comparison with C(18), hydrophilic-lipophilic balance and active carbon sorbents demonstrated the superiority of MWCNTs for non-toxic analogues of nerve agents. Optimized conditions involve 40 mg MWCNTs as the sorbent, 5.0 mL water as the washing solvent, 3 mL ethyl acetate as the eluent and sample loading of 10 mL water spiked at 0.1 µg/mL. The limits of detection (LOD) were achieved down to 1 and 0.05 ng/mL in full scan and selected ion-monitoring modes, respectively.

19.
Eur J Mass Spectrom (Chichester) ; 15(5): 579-85, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19679938

RESUMEN

We describe the gas chromatography/mass spectrometric (GC/MS) analysis of O-alkyl methylphosphinates (AMPs), which are included in schedule 2B4 chemicals in the Chemical Weapons Convention (CWC). GC/MS analysis of variety of AMPs and their deuterated analogues revealed that their fragmentations were determined by alpha-cleavages, McLafferty +1 and hydrogen rearrangements. Based on the obtained electron ionization mass spectra of AMPs the fragmentation routes were rationalized, which were substantiated by the GC/MS analysis of deuterated analogues.

20.
J Chromatogr A ; 1216(20): 4319-28, 2009 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-19329120

RESUMEN

Alkyl alkylphosphonic acids (AAPAs) are important environmental markers of nerve agents. A simple hollow fiber-based liquid-liquid-liquid microextraction (HFLLLME) technique has been developed to enrich the AAPAs from water. AAPAs were extracted from acidified aqueous phase to organic phase present in pores of the hollow fiber, and then back extracted into the alkaline acceptor phase present in the lumen of the hollow fiber. Variables affecting the HFLLLME process were optimized using a Plackett-Burman design and a Doehlert design. Optimal experimental conditions were: organic solvent, 1-octanol; pH of acceptor phase, 14; extraction time, 60min; pH of donor phase, 1; and NaCl concentration, 10% (w/v). Depending upon the alkyl substituent, lower limits of detection varied from 0.1 to 100ngmL(-1) (S/N>/=5). Repeatability of the method was observed with relative standard deviation of 1.49-9.83% (n=3). After validation, the method was applied to detect AAPAs present in the water sample provided by the Organization for Prohibition of Chemical Weapons (OPCW) during the 23rd official proficiency test. The added advantage of this method is that several successive extractions of AAPAs from the same water sample can be performed.


Asunto(s)
Fraccionamiento Químico/métodos , Sustancias para la Guerra Química/química , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/química , Compuestos Orgánicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA