Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639158

RESUMEN

Ribonuclease HI, an endoribonuclease, catalyzes the hydrolysis of the RNA strand of an RNA/DNA hybrid and requires divalent metal ions for its enzymatic activity. However, the mechanistic details of the activity of ribonuclease HI and its interaction with divalent metal ions remain unclear. In this study, we performed real-time monitoring of the enzyme-substrate complex in the presence of divalent metal ions (Mn2+ or Zn2+) using electrospray ionization-mass spectrometry (ESI-MS). The findings provide clear evidence that the enzymatic activity of the ternary complex requires the binding of two divalent metal ions. The Zn2+ ions bind to both the enzyme itself and the enzyme:substrate complex more strongly than Mn2+ ions, and gives, in part, the ternary complex, [RNase HI:nicked RNA/DNA hybrid:2Zn2+], suggesting that the ternary complex is retained, even after the hydrolysis of the substrate. The collective results presented herein shed new light on the essential role of divalent metal ions in the activity of ribonuclease HI and demonstrate how Zn2+ ions confer inhibitory properties on the activity of this enzyme by forming a highly stable complex with the substrate.


Asunto(s)
Ribonucleasa H/química , Ribonucleasa H/metabolismo , Sitios de Unión , Catálisis , Cationes Bivalentes/metabolismo , ADN/química , Endorribonucleasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Hidrólisis , Iones/metabolismo , Cinética , Magnesio/metabolismo , Manganeso/metabolismo , ARN/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Especificidad por Sustrato
2.
FEBS Lett ; 595(4): 452-461, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33314039

RESUMEN

The serine protease Tk-subtilisin from the hyperthermophilic archaeon Thermococcus kodakarensis possesses three insertion loops (IS1-IS3) on its surface, as compared to its mesophilic counterparts. Although IS1 and IS2 are required for maturation of Tk-subtilisin at high temperatures, the role of IS3 remains unknown. Here, CD spectroscopy revealed that IS3 deletion arrested Tk-subtilisin folding at an intermediate state, in which the central nucleus was formed, but the subsequent folding propagation into terminal subdomains did not occur. Alanine substitution of the aspartate residue in IS3 disturbed the intraloop hydrogen-bonding network, as evidenced by crystallographic analysis, resulting in compromised folding at high temperatures. Taking into account the high conservation of IS3 across hyperthermophilic homologues, we propose that the presence of IS3 is important for folding of hyperthermophilic subtilisins in high-temperature environments.


Asunto(s)
Alanina/química , Ácido Aspártico/química , Proteínas Bacterianas/química , Subtilisina/química , Thermococcus/química , Alanina/metabolismo , Sustitución de Aminoácidos , Ácido Aspártico/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Compuestos Cromogénicos/química , Compuestos Cromogénicos/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Calor , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Oligopéptidos/química , Oligopéptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Subtilisina/genética , Subtilisina/metabolismo , Thermococcus/enzimología
3.
J Biosci Bioeng ; 129(6): 657-663, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32008925

RESUMEN

Glycerol kinase (GK) is a key enzyme of glycerol metabolism. It participates in glycolysis and lipid membrane biosynthesis. A hexamer of GK from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1(Tk-GK) was identified as a substrate-binding form of the enzyme. Here, the X-ray crystal structure analysis and the biochemical analysis was done and the relationships between its unique oligomer structure and substrate binding affinity were investigated. Wild type GK and mutant K271E GK, which disrupts the hexamer formation interface, were crystallized with and without their substrates and analyzed at 2.19-3.05 Å resolution. In the absence of glycerol, Tk-GK was a dimer in solution. In the presence of its glycerol substrate, however, it became a hexamer consisting of three symmetrical dimers about the threefold axis. Through glycerol binding, all Tk-GK molecules in the hexamer were in closed form as a result of domain-motion. The closed form of Tk-GK had tenfold higher ATP affinity than the open form of Tk-GK. The hexamer structure stabilized the closed conformation and enhanced ATP binding affinity when the GK was bound to glycerol. This molecular mechanism is quite simple activity regulation mechanism among known GKs.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glicerol Quinasa/metabolismo , Glicerol/metabolismo , Thermococcus/enzimología , Glicerol Quinasa/química , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
4.
J Biosci Bioeng ; 127(6): 679-685, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30583977

RESUMEN

Glycerol-3-phosphate (G3P) is a key intermediate of glycerol metabolism and is oxidized to dihydroxyacetone phosphate aerobically or anaerobically by appropriate G3P dehydrogenases. A hyperthermophilic archaeon Thermococcus kodakarensis KOD1 has a novel operon consisting of three genes encoding an anaerobic G3P dehydrogenase (G3PDH), an NADH oxidase (NOX), and a molybdopterin oxidoreductase (MOX). Typically, the G3PDH gene (glpA) is included in an operon with genes encoding essential subunits of the G3PDH complex, glpB and glpC. The three genes from T. kodakarensis were cloned and expressed in Escherichia coli, and their recombinant proteins, Tk-G3PDH, Tk-NOX and Tk-MOX, were characterized. The optimal temperature of Tk-G3PDH for activity was 80°C, indicating high thermal stability. Tk-G3PDH has flavin adenine dinucleotide as a prosthetic group and catalyzes oxidation of G3P with kcat/Km 1.93 × 103 M-1s-1 at 80°C, compared with 9.83 × 105 M-1s-1 for the E. coli G3PDH complex at 37°C. Interestingly, Tk-G3PDH can catalyze this reaction even as a monomer, whereas GlpA must form a complex with GlpB and GlpC. Tk-G3PDH also forms a putative heteropentamer with Tk-NOX and Tk-MOX (G3PDH:NOX:MOX = 2:2:1). This complex may form an electron transfer pathway to a final electron acceptor in the cell membrane, as is the case for the typical G3PDH complex GlpABC.


Asunto(s)
Glicerolfosfato Deshidrogenasa/metabolismo , Temperatura , Thermococcus/enzimología , Anaerobiosis , Escherichia coli/genética , Flavina-Adenina Dinucleótido/metabolismo , Glicerolfosfato Deshidrogenasa/genética , Glicerofosfatos/metabolismo , Complejos Multienzimáticos/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Operón/genética , Thermococcus/genética , Thermococcus/fisiología
5.
Biochemistry ; 56(47): 6281-6291, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29094929

RESUMEN

Serratia marcescens secretes a lipase, LipA, through a type I secretion system (T1SS). The T1SS for LipA, the Lip system, is composed of an inner membrane ABC transporter with its nucleotide-binding domains (NBD), LipB, a membrane fusion protein, LipC, and an outer membrane channel protein, LipD. Passenger protein secreted by this system has been functionally and structurally characterized well, but relatively little information about the transporter complex is available. Here, we report the crystallographic studies of LipC without the membrane anchor region, LipC-, and the NBD of LipB (LipB-NBD). LipC- crystallographic analysis has led to the determination of the structure of the long α-helical and lipoyl domains, but not the area where it interacts with LipB, suggesting that the region is flexible without LipB. The long α-helical domain has three α-helices, which interacts with LipD in the periplasm. LipB-NBD has the common overall architecture and ATP hydrolysis activity of ABC transporter NBDs. Using the predicted models of full-length LipB and LipD, the overall structural insight into the Lip system is discussed.


Asunto(s)
Proteínas Bacterianas/química , Lipasa/química , Lipasa/metabolismo , Proteínas de la Fusión de la Membrana/química , Fusión de Membrana/fisiología , Nucleótidos/metabolismo , Serratia marcescens/enzimología , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Proteínas de la Fusión de la Membrana/metabolismo , Nucleótidos/química , Conformación Proteica
6.
Sci Rep ; 5: 9969, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25951507

RESUMEN

Several RNases H1 cleave the RNA-DNA junction of Okazaki fragment-like RNA-DNA/DNA substrate. This activity, termed 3'-junction ribonuclease (3'-JRNase) activity, is different from the 5'-JRNase activity of RNase H2 that cleaves the 5'-side of the ribonucleotide of the RNA-DNA junction and is required to initiate the ribonucleotide excision repair pathway. To examine whether RNase H1 exhibits 3'-JRNase activity for dsDNA containing a single ribonucleotide and can remove this ribonucleotide in collaboration with RNase H2, cleavage of a DNA8-RNA1-DNA9/DNA18 substrate with E. coli RNase H1 and H2 was analyzed. This substrate was cleaved by E. coli RNase H1 at the (5')RNA-DNA(3') junction, regardless of whether it was cleaved by E. coli RNase H2 at the (5')DNA-RNA(3') junction in advance or not. Likewise, this substrate was cleaved by E. coli RNase H2 at the (5')DNA-RNA(3') junction, regardless of whether it was cleaved by E. coli RNase H1 at the (5')RNA-DNA(3') junction in advance or not. When this substrate was cleaved by a mixture of E. coli RNases H1 and H2, the ribonucleotide was removed from the substrate. We propose that RNase H1 is involved in the excision of single ribonucleotides misincorporated into DNA in collaboration with RNase H2.


Asunto(s)
Reparación del ADN/fisiología , Ribonucleasa H/metabolismo , Replicación del ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Biológicos , Unión Proteica , Especificidad por Sustrato
7.
Mol Biotechnol ; 57(6): 526-38, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25673083

RESUMEN

Thermotoga maritima RNase H1 and Bacillus stearothermophilus RNase H2 have an N-terminal substrate binding domain, termed hybrid binding domain (TmaHBD), and N-terminal domain (BstNTD), respectively. HIV-1 reverse transcriptase (RT) is a heterodimer consisting of a P66 subunit and a P51 subunit. The P66 subunit contains a C-terminal RNase H domain, which exhibits RNase H activity either in the presence of Mg(2+) or Mn(2+) ions. The isolated RNase H domain of HIV-1 RT (RNH(HIV)) is inactive, possibly due to the lack of a substrate binding ability, disorder of a loop containing His539, and increased flexibility. To examine whether the activity of RNH(HIV) is restored by the attachment of TmaHBD or BstNTD to its N-terminus, two chimeric proteins, TmaHBD-RNH(HIV) and BstNTD-RNH(HIV), were constructed and characterized. Both chimeric proteins bound to RNA/DNA hybrid more strongly than RNH(HIV) and exhibited enzymatic activity in the presence of Mn(2+) ions. They did not exhibit activity or exhibited very weak activity in the presence of Mg(2+) ions. These results indicate that TmaHBD and BstNTD function as an RNA/DNA hybrid binding tag, and greatly increase the substrate binding affinity and Mn(2+)-dependent activity of RNH(HIV) but do not restore the Mg(2+)-dependent activity of RNH(HIV).


Asunto(s)
Geobacillus stearothermophilus/enzimología , Transcriptasa Inversa del VIH/metabolismo , Ribonucleasas/metabolismo , Thermotoga maritima/enzimología , Dicroismo Circular , Estabilidad de Enzimas , Escherichia coli/crecimiento & desarrollo , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Espectrofotometría Ultravioleta , Especificidad por Sustrato
8.
Protein Sci ; 24(1): 93-104, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25348365

RESUMEN

The genes encoding six novel esterolytic/lipolytic enzymes, termed LC-Est1∼6, were isolated from a fosmid library of a leaf-branch compost metagenome by functional screening using tributyrin agar plates. These enzymes greatly vary in size and amino acid sequence. The highest identity between the amino acid sequence of each enzyme and that available from the database varies from 44 to 73%. Of these metagenome-derived enzymes, LC-Est1 is characterized by the presence of a long N-terminal extension (LNTE, residues 26-283) between a putative signal peptide (residues 1-25) and a C-terminal esterase domain (residues 284-510). A putative esterase from Candidatus Solibacter usitatus (CSu-Est) is the only protein, which shows the significant amino acid sequence identity (46%) to the entire region of LC-Est1. To examine whether LC-Est1 exhibits activity and its LNTE is important for activity and stability of the esterase domain, LC-Est1 (residues 26-510), LC-Est1C (residues 284-510), and LC-Est1C* (residues 304-510) were overproduced in E. coli, purified, and characterized. LC-Est1C* was only used for structural analysis. The crystal structure of LC-Est1C* highly resembles that of the catalytic domain of Thermotoga maritima esterase, suggesting that LNTE is not required for folding of the esterase domain. The enzymatic activity of LC-Est1C was lower than that of LC-Est1 by 60%, although its substrate specificity was similar to that of LC-Est1. LC-Est1C was less stable than LC-Est1 by 3.3°C. These results suggest that LNTE of LC-Est1 rather exists as an independent domain but is required for maximal activity and stability of the esterase domain.


Asunto(s)
Bacterias/enzimología , Esterasas/química , Microbiología del Suelo , Acidobacteria/química , Acidobacteria/enzimología , Acidobacteria/metabolismo , Secuencia de Aminoácidos , Bacterias/química , Bacterias/metabolismo , Estabilidad de Enzimas , Esterasas/aislamiento & purificación , Esterasas/metabolismo , Biblioteca de Genes , Metagenoma , Modelos Moleculares , Datos de Secuencia Molecular , Hojas de la Planta/microbiología , Conformación Proteica , Alineación de Secuencia , Suelo/química , Especificidad por Sustrato , Thermotoga maritima/química , Thermotoga maritima/enzimología , Thermotoga maritima/metabolismo
9.
Protein Sci ; 24(3): 408-19, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25545469

RESUMEN

A metagenome-derived glycoside hydrolase family 9 enzyme with an N-terminal immunoglobulin-like (Ig-like) domain, leaf-branch compost (LC)-CelG, was characterized and its crystal structure was determined. LC-CelG did not hydrolyze p-nitrophenyl cellobioside but hydrolyzed CM-cellulose, indicating that it is endoglucanase. LC-CelG exhibited the highest activity at 70°C and >80% of the maximal activity at a broad pH range of 5-9. Its denaturation temperature was 81.4°C, indicating that LC-CelG is a thermostable enzyme. The structure of LC-CelG resembles those of CelD from Clostridium thermocellum (CtCelD), Cel9A from Alicyclobacillus acidocaldarius (AaCel9A), and cellobiohydrolase CbhA from C. thermocellum (CtCbhA), which show relatively low (29-31%) amino acid sequence identities to LC-CelG. Three acidic active site residues are conserved as Asp194, Asp197, and Glu558 in LC-CelG. Ten of the thirteen residues that form the substrate binding pocket of AaCel9A are conserved in LC-CelG. Removal of the Ig-like domain reduced the activity and stability of LC-CelG by 100-fold and 6.3°C, respectively. Removal of the Gln40- and Asp99-mediated interactions between the Ig-like and catalytic domains destabilized LC-CelG by 5.0°C without significantly affecting its activity. These results suggest that the Ig-like domain contributes to the stabilization of LC-CelG mainly due to the Gln40- and Asp99-mediated interactions. Because the LC-CelG derivative lacking the Ig-like domain accumulated in Escherichia coli cells mostly in an insoluble form and this derivative accumulated in a soluble form exhibited very weak activity, the Ig-like domain may be required to make the conformation of the active site functional and prevent aggregation of the catalytic domain.


Asunto(s)
Celulasa/química , Celulasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Celulasa/genética , Estabilidad de Enzimas , Inmunoglobulinas , Metagenoma , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad , Zinc/química , Zinc/metabolismo
10.
FEBS Open Bio ; 4: 936-46, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25426413

RESUMEN

Ten genes encoding novel cellulases with putative signal peptides at the N-terminus, termed pre-LC-CelA-J, were isolated from a fosmid library of a leaf-branch compost metagenome by functional screening using agar plates containing carboxymethyl cellulose and trypan blue. All the cellulases except pre-LC-CelG have a 14-29 residue long flexible linker (FL) between the signal peptide and the catalytic domain. LC-CelA without a signal peptide (residues 20-261), which shows 76% amino acid sequence identity to Cel12A from Rhodothermus marinus (RmCel12A), was overproduced in Escherichia coli, purified and characterized. LC-CelA exhibited its highest activity across a broad pH range (pH 5-9) and at 90 °C, indicating that LC-CelA is a highly thermostable cellulase, like RmCel12A. The crystal structure of LC-CelA was determined at 1.85 Å resolution and is nearly identical to that of RmCel12A determined in a form without the FL. Both proteins contain two disulfide bonds. LC-CelA has a 16-residue FL (residues 20-35), most of which is not visible in the electron density map, probably due to structural disorder. However, Glu34 and Pro35 form hydrogen bonds with the central region of the protein. ΔFL-LC-CelA (residues 36-261) and E34A-LC-CelA with a single Glu34 â†’ Ala mutation were therefore constructed and characterized. ΔFL-LC-CelA and E34A-LC-CelA had lower melting temperatures (T m) than LC-CelA by 14.7 and 12.0 °C respectively. The T m of LC-CelA was also decreased by 28.0 °C in the presence of dithiothreitol. These results suggest that Glu34-mediated hydrogen bonds and the two disulfide bonds contribute to the stabilization of LC-CelA.

11.
PLoS One ; 9(9): e109016, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25268753

RESUMEN

RNase H1 from Halobacterium sp. NRC-1 (Halo-RNase H1) is characterized by the abundance of acidic residues on the surface, including bi/quad-aspartate site residues. Halo-RNase H1 exists in partially folded (I) and native (N) states in low-salt and high-salt conditions respectively. Its folding is also induced by divalent metal ions. To understand this unique folding mechanism of Halo-RNase H1, the active site mutant (2A-RNase H1), the bi/quad-aspartate site mutant (6A-RNase H1), and the mutant at both sites (8A-RNase H1) were constructed. The far-UV CD spectra of these mutants suggest that 2A-RNase H1 mainly exists in the I state, 6A-RNase H1 exists both in the I and N states, and 8A-RNase H1 mainly exists in the N state in a low salt-condition. These results suggest that folding of Halo-RNase H1 is induced by binding of divalent metal ions to the bi/quad-aspartate site. To examine whether metal-induced folding is unique to Halo-RNase H1, RNase H2 from the same organism (Halo-RNase H2) was overproduced and purified. Halo-RNase H2 exists in the I and N states in low-salt and high-salt conditions respectively, as does Halo-RNase H1. However, this protein exists in the I state even in the presence of divalent metal ions. Halo-RNase H2 exhibits junction ribonuclease activity only in a high-salt condition. A tertiary model of this protein suggests that this protein does not have a quad-aspartate site. We propose that folding of Halo-RNase H1 is induced by binding of divalent metal ion to the quad-aspartate site in a low-salt condition.


Asunto(s)
Proteínas Arqueales/química , Halobacterium/química , Magnesio/química , Manganeso/química , Ribonucleasa H/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Ácido Aspártico/química , Dominio Catalítico , Cationes Bivalentes , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Halobacterium/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Ribonucleasa H/genética , Alineación de Secuencia , Cloruro de Sodio/química
12.
J Biotechnol ; 191: 78-85, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25034434

RESUMEN

The crystal structure of ß-galactosidase from Bacillus circulans (BgaC) was determined at 1.8Å resolution. The overall structure of BgaC consists of three distinct domains, which are the catalytic domain with a TIM-barrel structure and two all-ß domains (ABDs). The main-chain fold and steric configurations of the acidic and aromatic residues at the active site were very similar to those of Streptococcus pneumoniae ß(1,3)-galactosidase BgaC in complex with galactose. The structure of BgaC was used for the rational design of a glycosynthase. BgaC belongs to the glycoside hydrolase family 35. The essential nucleophilic amino acid residue has been identified as glutamic acid at position 233 by site-directed mutagenesis. Construction of the active site mutant BgaC-Glu233Gly gave rise to a galactosynthase transferring the sugar moiety from α-d-galactopyranosyl fluoride (αGalF) to different ß-linked N-acetylglucosamine acceptor substrates in good yield (40-90%) with a remarkably stable product formation. Enzymatic syntheses with BgaC-Glu233Gly afforded the stereo- and regioselective synthesis of ß1-3-linked key galactosides like galacto-N-biose or lacto-N-biose.


Asunto(s)
Amino Azúcares/biosíntesis , Bacillus/enzimología , beta-Galactosidasa/química , Amino Azúcares/química , Bacillus/química , Dominio Catalítico , Cristalografía por Rayos X , Galactosa/química , Mutagénesis Sitio-Dirigida , Polisacáridos/biosíntesis , Polisacáridos/química , Pliegue de Proteína , Especificidad por Sustrato
13.
J Struct Biol ; 187(2): 119-128, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24972277

RESUMEN

RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1 (Halo-RNase H1) requires ⩾2M NaCl, ⩾10mM MnCl2, or ⩾300mM MgCl2 for folding. To understand the structural basis for this salt-dependent folding of Halo-RNase H1, the crystal structure of Halo-RNase H1 was determined in the presence of 10mM MnCl2. The structure of Halo-RNase H1 highly resembles those of metagenome-derived LC11-RNase H1 and Sulfolobus tokodaii RNase H1 (Sto-RNase H1), except that it contains two Mn(2+) ions at the active site and has three bi-aspartate sites on its surface. To examine whether negative charge repulsion at these sites are responsible for low-salt denaturation of Halo-RNase H1, a series of the mutant proteins of Halo-RNase H1 at these sites were constructed. The far-UV CD spectra of these mutant proteins measured in the presence of various concentrations of NaCl suggest that these mutant proteins exist in an equilibrium between a partially folded state and a folded state. However, the fraction of the protein in a folded state is nearly 0% for the active site mutant, 40% for the bi-aspartate site mutant, and 70% for the mutant at both sites in the absence of salt. The active site mutant requires relatively low concentration (∼0.5M) of salt for folding. These results suggest that suppression of negative charge repulsion at both active and bi-aspartate sites by salt is necessary to yield a folded protein.


Asunto(s)
Conformación Proteica/efectos de los fármacos , Pliegue de Proteína/efectos de los fármacos , Ribonucleasa H/química , Dominio Catalítico/efectos de los fármacos , Cloruros/química , Cloruros/farmacología , Halobacterium/efectos de los fármacos , Cloruro de Magnesio/química , Cloruro de Magnesio/farmacología , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Mutación , Ribonucleasa H/efectos de los fármacos , Cloruro de Sodio/química , Cloruro de Sodio/farmacología
14.
Biochemistry ; 53(11): 1858-69, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24593046

RESUMEN

The crystal structure of metagenome-derived LC-cutinase with polyethylene terephthalate (PET)-degrading activity was determined at 1.5 Å resolution. The structure strongly resembles that of Thermobifida alba cutinase. Ser165, Asp210, and His242 form the catalytic triad. Thermal denaturation and guanidine hydrochloride (GdnHCl)-induced unfolding of LC-cutinase were analyzed at pH 8.0 by circular dichroism spectroscopy. The midpoint of the transition of the thermal denaturation curve, T1/2, and that of the GdnHCl-induced unfolding curve, Cm, at 30 °C were 86.2 °C and 4.02 M, respectively. The free energy change of unfolding in the absence of GdnHCl, ΔG(H2O), was 41.8 kJ mol(-1) at 30 °C. LC-cutinase unfolded very slowly in GdnHCl with an unfolding rate, ku(H2O), of 3.28 × 10(-6) s(-1) at 50 °C. These results indicate that LC-cutinase is a kinetically robust protein. Nevertheless, the optimal temperature for the activity of LC-cutinase toward p-nitrophenyl butyrate (50 °C) was considerably lower than the T1/2 value. It increased by 10 °C in the presence of 1% polyethylene glycol (PEG) 1000. It also increased by at least 20 °C when PET was used as a substrate. These results suggest that the active site is protected from a heat-induced local conformational change by binding of PEG or PET. LC-cutinase contains one disulfide bond between Cys275 and Cys292. To examine whether this disulfide bond contributes to the thermodynamic and kinetic stability of LC-cutinase, C275/292A-cutinase without this disulfide bond was constructed. Thermal denaturation studies and equilibrium and kinetic studies of the GdnHCl-induced unfolding of C275/292A-cutinase indicate that this disulfide bond contributes not only to the thermodynamic stability but also to the kinetic stability of LC-cutinase.


Asunto(s)
Hidrolasas de Éster Carboxílico/química , Metagenoma/genética , Streptomyces/enzimología , Termodinámica , Sitios de Unión/genética , Hidrolasas de Éster Carboxílico/metabolismo , Cristalografía por Rayos X , Estabilidad de Enzimas , Cinética , Tereftalatos Polietilenos/química , Desnaturalización Proteica , Streptomyces/genética
15.
J Struct Biol ; 185(3): 257-66, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24473062

RESUMEN

Kynurenine aminotransferase (KAT) is a homodimeric pyridoxal protein that mediates the catalytic conversion of kynurenine (KYN) to kynurenic acid (KYA), an endogenous N-methyl-d-aspartate (NMDA) receptor antagonist. KAT is involved in the biosynthesis of glutamic and aspartic acid, functions as a neurotransmitter for the NMDA receptor in mammals, and is regulated by allosteric mechanisms. Its importance in various diseases such as schizophrenia makes KAT a highly attractive drug target. Here, we present the crystal structure of the Pyrococcus horikoshii KAT (PhKAT) in complex with pyridoxamine phosphates (PMP), KYN, and KYA. Surprisingly, the PMP was bound to the LYS-269 of phKAT by forming a covalent hydrazine bond. This crystal structure clearly shows that an amino group of KYN was transaminated to PLP, which forms a Schiff's base with the LYS-269 of the KYN. Thus, our structure confirms that the PMPs represent an intermediate state during the KAT reaction. Thus, PhKAT catalyzes the sequential conversion of KYN to KYA via the formation of an intermediate 4-(2-aminophenyl)-2,4-dioxobutanoate (4AD), which is spontaneously converted to KYA in the absence of an amino group acceptor. Furthermore, we identified the two entry and exit sites of the PhKAT homodimer for KYN and KYA, respectively. The structural data on PhKAT presented in this manuscript contributes to further the understanding of transaminase enzyme reaction mechanisms.


Asunto(s)
Ácido Quinurénico/metabolismo , Transaminasas/química , Transaminasas/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Ácido Quinurénico/química , Quinurenina/química , Quinurenina/metabolismo , Datos de Secuencia Molecular , Piridoxamina/análogos & derivados , Piridoxamina/química , Piridoxamina/metabolismo , Pyrococcus horikoshii/metabolismo , Homología de Secuencia de Aminoácido
16.
Appl Microbiol Biotechnol ; 98(5): 2113-20, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23880875

RESUMEN

The abnormal prion protein (scrapie-associated prion protein, PrP(Sc)) is considered to be included in the group of infectious agents of transmissible spongiform encephalopathies. Since PrP(Sc) is highly resistant to normal sterilization procedures, the decontamination of PrP(Sc) is a significant public health issue. In the present study, a hyperthermostable protease, Tk-subtilisin, was used to degrade PrP(Sc). Although PrP(Sc) is known to be resistant toward proteolytic enzymes, Tk-subtilisin was able to degrade PrP(Sc) under extreme conditions. The level of PrP(Sc) in brain homogenates was found to decrease significantly in vitro following Tk-subtilisin treatment at 100 °C, whereas some protease-resistant fractions remain after proteinase K treatment. Rather small amounts of Tk-subtilisin (0.3 U) were required to degrade PrP(Sc) at 100 °C and pH 8.0. In addition, Tk-subtilisin was observed to degrade PrP(Sc) in the presence of sodium dodecyl sulfate or other industrial surfactants. Although several proteases degrading PrP(Sc) have been reported, practical decontamination procedures using enzymes are not available. This report aims to provide basic information for the practical use of a proteolytic enzyme for PrP(Sc) degradation.


Asunto(s)
Proteínas PrPSc/metabolismo , Subtilisina/aislamiento & purificación , Subtilisina/metabolismo , Thermococcus/enzimología , Detergentes/metabolismo , Inhibidores Enzimáticos/metabolismo , Estabilidad de Enzimas , Calor , Concentración de Iones de Hidrógeno , Proteolisis , Dodecil Sulfato de Sodio/metabolismo , Subtilisina/química
17.
Biochemistry ; 52(50): 9080-8, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24279884

RESUMEN

Subtilisin E is activated from its inactive precursor Pro-subtilisin E by autoprocessing and degradation of the propeptide. Subtilisin E has two calcium binding sites, the high-affinity Ca1 site and the low-affinity Ca2 site. The Ca1 site is conserved in various subtilisin-like proteases and is important for stability. This site is not formed in Pro-subtilisin E, because the structural rearrangement of the N-terminal region of the subtilisin domain upon autoprocessing is necessary for the formation of this site. As a result, Pro-subtilisin E is not fully folded. In contrast, Pro-Tk-subtilisin from Thermococcus kodakarensis is fully folded, because it does not require the structural rearrangement upon autoprocessing for the formation of the Ca1 site due to the presence of the insertion sequence IS1 between the propeptide and subtilisin domains. To examine whether the Ca1 site is formed in Pro-subtilisin E by inserting IS1 between the propeptide and subtilisin domains, the Pro-subtilisin E mutant with this insertion, IS1-Pro-subtilisin E, and its active site mutants, IS1-Pro-S221A and IS1-Pro-S221C, were constructed and characterized. The crystal structure of IS1-Pro-S221A revealed that this protein is fully folded and the Ca1 site is formed. In this structure, IS1 serves as a linker that brings the N-terminus of the subtilisin domain near the Ca1 site. IS1-Pro-S221A in a calcium-bound form was more stable than that in a calcium-free form by 13.1 °C. IS1-Pro-S221C was more rapidly autoprocessed than Pro-S221C. These results suggest that IS1 facilitates the formation of the Ca1 site and the complete folding of Pro-subtilisin E and thereby accelerates its autoprocessing.


Asunto(s)
Calcio/metabolismo , Mutagénesis Insercional/genética , Subtilisinas/metabolismo , Thermococcus/enzimología , Bacillus/genética , Bacillus/metabolismo , Secuencia de Bases , Sitios de Unión , Calcio/química , Conformación Proteica , Pliegue de Proteína , Subtilisinas/química , Subtilisinas/genética , Thermococcus/metabolismo
18.
Protein Sci ; 22(12): 1711-21, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24115021

RESUMEN

Tk-subtilisin (Gly70-Gly398) is a subtilisin homolog from Thermococcus kodakarensis. Active Tk-subtilisin is produced from its inactive precursor, Pro-Tk-subtilisin (Gly1-Gly398), by autoprocessing and degradation of the propeptide (Tk-propeptide, Gly1-Leu69). This activation process is extremely slow at moderate temperatures owing to high stability of Tk-propeptide. Tk-propeptide is stabilized by the hydrophobic core. To examine whether a single nonpolar-to-polar amino acid substitution at this core affects the activation rate of Pro-Tk-subtilisin, the Pro-Tk-subtilisin derivative with the Phe17 → His mutation (Pro-F17H), Tk-propeptide derivative with the same mutation (F17H-propeptide), and two active-site mutants of Pro-F17H (Pro-F17H/S324A and Pro-F17H/S324C) were constructed. The crystal structure of Pro-F17H/S324A was nearly identical to that of Pro-S324A, indicating that the mutation does not affect the structure of Pro-Tk-subtilisin. The refolding rate of Pro-F17H/S324A and autoprocessing rate of Pro-F17H/S324C were also nearly identical to those of their parent proteins (Pro-S324A and Pro-S324C). However, the activation rate of Pro-F17H greatly increased when compared with that of Pro-Tk-subtilisin, such that Pro-F17H is efficiently activated even at 40°C. The far-UV circular dichroism spectrum of F17H-propeptide did not exhibit a broad trough at 205-230 nm, which is observed in the spectrum of Tk-propeptide. F17H-propeptide is more susceptible to chymotryptic degradation than Tk-propeptide. These results suggest that F17H-propeptide is unfolded in an isolated form and is therefore rapidly degraded by Tk-subtilisin. Thus, destabilization of the hydrophobic core of Tk-propeptide by a nonpolar-to-polar amino acid substitution is an effective way to increase the activation rate of Pro-Tk-subtilisin.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Precursores Enzimáticos/química , Precursores Enzimáticos/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Subtilisina/química , Subtilisinas/química , Subtilisinas/metabolismo , Sustitución de Aminoácidos , Proteínas Arqueales/genética , Dominio Catalítico , Dicroismo Circular , Cristalografía por Rayos X , Activación Enzimática , Precursores Enzimáticos/genética , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fragmentos de Péptidos/genética , Replegamiento Proteico , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subtilisina/genética , Subtilisinas/genética , Thermococcus/genética , Thermococcus/metabolismo
19.
FEBS J ; 280(20): 5065-79, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23937561

RESUMEN

Bacillus stearothermophilus RNase H2 (BstRNH2) and Thermotoga maritima RNase H2 (TmaRNH2) have N-terminal and C-terminal extensions, respectively, as compared with Aquifex aeolicus RNase H2 (AaeRNH2). To analyze the role of these extensions, BstRNH2 and TmaRNH2 without these extensions were constructed, and their biochemical properties were compared with those of their intact partners and AaeRNH2. The far-UV CD spectra of all proteins were similar, suggesting that the protein structure is not significantly altered by removal of these extensions. However, both the junction ribonuclease and RNase H activities of BstRNH2 and TmaRNH2, as well as their substrate-binding affinities, were considerably decreased by removal of these extensions. The stability of BstRNH2 and TmaRNH2 was also decreased by removal of these extensions. The activity, substrate binding affinity and stability of TmaRNH2 without the C-terminal 46 residues were partly restored by the attachment of the N-terminal extension of BstRNH2. These results suggest that the N-terminal extension of BstRNH2 functions as a substrate-binding domain and stabilizes the RNase H domain. Because the C-terminal extension of TmaRNH2 assumes a helix hairpin structure and does not make direct contact with the substrate, this extension is probably required to make the conformation of the substrate-binding site functional. AaeRNH2 showed comparable junction ribonuclease activity to those of BstRNH2 and TmaRNH2, and was more stable than these proteins, indicating that bacterial RNases H2 do not always require an N-terminal or C-terminal extension to increase activity, substrate-binding affinity, and/or stability.


Asunto(s)
Geobacillus stearothermophilus/enzimología , Ribonucleasa H/metabolismo , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Dicroismo Circular , Estabilidad de Enzimas , Escherichia coli/enzimología , Datos de Secuencia Molecular , Ribonucleasa H/química , Homología de Secuencia de Aminoácido , Espectrofotometría Ultravioleta , Especificidad por Sustrato
20.
Biochemistry ; 52(28): 4774-80, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23822830

RESUMEN

Proteins from thermophiles possess high thermostability. The stabilization mechanisms differ between archaeal and bacterial proteins, whereby archaeal proteins are mainly stabilized via hydrophobic interactions and bacterial proteins by ion pairs. High stability is an important factor in promoting protein evolution, but the precise means by which different stabilization mechanisms affect the evolution process remain unclear. In this study, we investigated a random mutational drift of esterases from thermophilic archaea and bacteria at high temperatures. Our results indicate that mutations in archaeal proteins lead to improved function with no loss of stability, while mutant bacterial proteins are largely destabilized with decreased activity at high temperatures. On the basis of these findings, we suggest that archaeal proteins possess higher "evolvability" than bacterial proteins under temperature selection and are additionally able to evolve into eukaryotic proteins.


Asunto(s)
Proteínas Arqueales/química , Proteínas Bacterianas/química , Evolución Molecular Dirigida , Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Modelos Moleculares , Reacción en Cadena de la Polimerasa , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...