Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
World J Radiol ; 13(11): 354-370, 2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34904050

RESUMEN

Radiology education and training is of paramount clinical importance given the prominence of medical imaging utilization in effective clinical practice. The incorporation of basic radiology in the medical curriculum has continued to evolve, focusing on teaching image interpretation skills, the appropriate ordering of radiological investigations, judicious use of ionizing radiation, and providing exposure to interventional radiology. Advancements in radiology have been driven by the digital revolution, which has, in turn, had a positive impact on radiology education and training. Upon the advent of the corona virus disease 2019 (COVID-19) pandemic, many training institutions and hospitals adhered to directives which advised rescheduling of non-urgent outpatient appointments. This inevitably impacted the workflow of the radiology department, which resulted in the reduction of clinical in-person case reviews and consultations, as well as in-person teaching sessions. Several medical schools and research centers completely suspended face-to-face academic activity. This led to challenges for medical teachers to complete the radiology syllabus while ensuring that teaching activities continued safely and effectively. As a result, online teaching platforms have virtually replaced didactic face-to-face lectures. Radiology educators also sought other strategies to incorporate interactive teaching sessions while adopting the e-learning approach, as they were cognizant of the limitations that this may have on students' clinical expertise. Migration to online methods to review live cases, journal clubs, simulation-based training, clinical interaction, and radiology examination protocolling are a few examples of successfully addressing the limitations in reduced clinical exposure. In this review paper, we discuss (1) The impact of the COVID-19 pandemic on radiology education, training, and practice; (2) Challenges and strategies involved in delivering online radiology education for undergraduates and postgraduates during the COVID-19 pandemic; and (3) Difference between the implementation of radiology education during the COVID-19 pandemic and pre-COVID-19 era.

3.
ISRN Obstet Gynecol ; 2014: 651783, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25006483

RESUMEN

Objectives. To study the prevalence and the pattern of major congenital malformations and its contribution to the overall perinatal morbidity and mortality. Methods. It is a retrospective population based study. It includes all major congenital malformations in newborns during 1993-2012. The data was collected from the birth register, the neonatal admission register and the individual patient records at the Queen Elizabeth Hospital where over 90% of deliveries take place and it is the only facility for the care of sick newborns in this country. Results. The overall prevalence of major congenital malformations among the live births was 59/10,000 live births and that among the stillbirths was 399/10,000 stillbirths. Circulatory system was the most commonly affected and accounted for 20% of all the major congenital malformations. Individually, Down syndrome (4.1/10, 000 live births) was the commonest major congenital malformation. There was a significant increase in the overall prevalence during the study period. Major congenital malformations were responsible for 14% of all neonatal death. Conclusions. Less than 1% of all live newborns have major congenital malformations with a preponderance of the malformations of the circulatory system. Major congenital malformations contribute significantly to the overall neonatal morbidity and mortality in this country.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...