Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(17)2022 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-36081120

RESUMEN

Color is an essential feature in histogram-based matching. This can be extracted as statistical data during the comparison process. Although the applicability of color features in histogram-based techniques has been proven, position information is lacking during the matching process. We present a conceptually simple and effective method called multiple-layered absent color indexing (ABC-ML) for template matching. Apparent and absent color histograms are obtained from the original color histogram, where the absent colors belong to low-frequency or vacant bins. To determine the color range of compared images, we propose a total color space (TCS) that can determine the operating range of the histogram bins. Furthermore, we invert the absent colors to obtain the properties of these colors using threshold hT. Then, we compute the similarity using the intersection. A multiple-layered structure is proposed against the shift issue in histogram-based approaches. Each layer is constructed using the isotonic principle. Thus, absent color indexing and multiple-layered structure are combined to solve the precision problem. Our experiments on real-world images and open data demonstrated that they have produced state-of-the-art results. Moreover, they retained the histogram merits of robustness in cases of deformation and scaling.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Color , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Phys Rev E ; 104(2-2): 025005, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34525670

RESUMEN

Hand-crumpled paper balls involve intricate structure with a network of creases and vertices, yet show simple scaling properties, which suggests self-similarity of the structure. We investigate the internal structure of crumpled papers by the microcomputed tomography (micro-CT) without destroying or unfolding them. From the reconstructed three-dimensional (3D) data, we examine several power laws for the crumpled square sheets of paper of the sizes L=50-300 mm and obtain the mass fractal dimension D_{M}=2.7±0.1 by the relation between the mass and the radius of gyration of the balls and the fractal dimension 2.5≲d_{f}≲2.8 for the internal structure of each crumpled paper ball by the box counting method in the real space and the structure factors in the Fourier space. The data for the paper sheets are consistent with D_{M}=d_{f}, suggesting that the self-similarity in the structure of each crumpled ball gives rise to the similarity among the balls with different sizes. We also examine the cellophane sheets and the aluminium foils of the size L=200 mm and obtain 2.6≲d_{f}≲2.8 for both of them. The micro-CT also allows us to reconstruct 3D structure of a line drawn on the crumpled sheets of paper. The Hurst exponent for the root-mean-square displacement along the line is estimated as H≈0.9 for the length scale shorter than the scale of the radius of gyration, beyond which the line structure becomes more random with H∼0.5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...