Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EMBO J ; 37(3): 427-445, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29335280

RESUMEN

The voltage-gated sodium channel NaV1.7 plays a critical role in pain pathways. We generated an epitope-tagged NaV1.7 mouse that showed normal pain behaviours to identify channel-interacting proteins. Analysis of NaV1.7 complexes affinity-purified under native conditions by mass spectrometry revealed 267 proteins associated with Nav1.7 in vivo The sodium channel ß3 (Scn3b), rather than the ß1 subunit, complexes with Nav1.7, and we demonstrate an interaction between collapsing-response mediator protein (Crmp2) and Nav1.7, through which the analgesic drug lacosamide regulates Nav1.7 current density. Novel NaV1.7 protein interactors including membrane-trafficking protein synaptotagmin-2 (Syt2), L-type amino acid transporter 1 (Lat1) and transmembrane P24-trafficking protein 10 (Tmed10) together with Scn3b and Crmp2 were validated by co-immunoprecipitation (Co-IP) from sensory neuron extract. Nav1.7, known to regulate opioid receptor efficacy, interacts with the G protein-regulated inducer of neurite outgrowth (Gprin1), an opioid receptor-binding protein, demonstrating a physical and functional link between Nav1.7 and opioid signalling. Further information on physiological interactions provided with this normal epitope-tagged mouse should provide useful insights into the many functions now associated with the NaV1.7 channel.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Dolor/fisiopatología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/metabolismo , Células Receptoras Sensoriales/metabolismo , Acetamidas/farmacología , Analgésicos/farmacología , Animales , Línea Celular , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lacosamida , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas/fisiología , Sinaptotagmina II/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Subunidad beta-3 de Canal de Sodio Activado por Voltaje/metabolismo
2.
Clin Sci (Lond) ; 130(24): 2257-2265, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815510

RESUMEN

Voltage-gated sodium channels (VGSCs) are heteromeric transmembrane protein complexes. Nine homologous members, SCN1A-11A, make up the VGSC gene family. Sodium channel isoforms display a wide range of kinetic properties endowing different neuronal types with distinctly varied firing properties. Among the VGSCs isoforms, Nav1.7, Nav1.8 and Nav1.9 are preferentially expressed in the peripheral nervous system. These isoforms are known to be crucial in the conduction of nociceptive stimuli with mutations in these channels thought to be the underlying cause of a variety of heritable pain disorders. This review provides an overview of the current literature concerning the role of VGSCs in the generation of pain and heritable pain disorders.


Asunto(s)
Dolor/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Humanos , Familia de Multigenes , Neuronas/metabolismo , Dolor/genética , Canales de Sodio Activados por Voltaje/genética
3.
Nat Commun ; 6: 8967, 2015 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26634308

RESUMEN

Loss-of-function mutations in the SCN9A gene encoding voltage-gated sodium channel Nav1.7 cause congenital insensitivity to pain in humans and mice. Surprisingly, many potent selective antagonists of Nav1.7 are weak analgesics. We investigated whether Nav1.7, as well as contributing to electrical signalling, may have additional functions. Here we report that Nav1.7 deletion has profound effects on gene expression, leading to an upregulation of enkephalin precursor Penk mRNA and met-enkephalin protein in sensory neurons. In contrast, Nav1.8-null mutant sensory neurons show no upregulated Penk mRNA expression. Application of the opioid antagonist naloxone potentiates noxious peripheral input into the spinal cord and dramatically reduces analgesia in both female and male Nav1.7-null mutant mice, as well as in a human Nav1.7-null mutant. These data suggest that Nav1.7 channel blockers alone may not replicate the analgesic phenotype of null mutant humans and mice, but may be potentiated with exogenous opioids.


Asunto(s)
Encefalinas/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Insensibilidad Congénita al Dolor/metabolismo , Adulto , Animales , Encefalinas/genética , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.7/genética , Insensibilidad Congénita al Dolor/genética , Insensibilidad Congénita al Dolor/fisiopatología , Sensación , Células Receptoras Sensoriales/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-24690524

RESUMEN

Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20mM ethanol for seven days (48hpf-9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system.


Asunto(s)
Ansiedad/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/crecimiento & desarrollo , Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Conducta Social , Animales , Encéfalo/fisiopatología , Femenino , Masculino , Actividad Motora/fisiología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor de Serotonina 5-HT1A/metabolismo , Serotonina/metabolismo , Estrés Psicológico/fisiopatología , Pez Cebra , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA