Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934408

RESUMEN

PURPOSE: To develop a fast denoising framework for high-dimensional MRI data based on a self-supervised learning scheme, which does not require ground truth clean image. THEORY AND METHODS: Quantitative MRI faces limitations in SNR, because the variation of signal amplitude in a large set of images is the key mechanism for quantification. In addition, the complex non-linear signal models make the fitting process vulnerable to noise. To address these issues, we propose a fast deep-learning framework for denoising, which efficiently exploits the redundancy in multidimensional MRI data. A self-supervised model was designed to use only noisy images for training, bypassing the challenge of clean data paucity in clinical practice. For validation, we used two different datasets of simulated magnetization transfer contrast MR fingerprinting (MTC-MRF) dataset and in vivo DWI image dataset to show the generalizability. RESULTS: The proposed method drastically improved denoising performance in the presence of mild-to-severe noise regardless of noise distributions compared to previous methods of the BM3D, tMPPCA, and Patch2self. The improvements were even pronounced in the following quantification results from the denoised images. CONCLUSION: The proposed MD-S2S (Multidimensional-Self2Self) denoising technique could be further applied to various multi-dimensional MRI data and improve the quantification accuracy of tissue parameter maps.

2.
Med Phys ; 51(6): 4143-4157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598259

RESUMEN

BACKGROUND: Reducing Magnetic resonance imaging (MRI) scan time has been an important issue for clinical applications. In order to reduce MRI scan time, imaging acceleration was made possible by undersampling k-space data. This is achieved by leveraging additional spatial information from multiple, independent receiver coils, thereby reducing the number of sampled k-space lines. PURPOSE: The aim of this study is to develop a deep-learning method for parallel imaging with a reduced number of auto-calibration signals (ACS) lines in noisy environments. METHODS: A cycle interpolator network is developed for robust reconstruction of parallel MRI with a small number of ACS lines in noisy environments. The network estimates missing (unsampled) lines of each coil data, and these estimated missing lines are then utilized to re-estimate the sampled k-space lines. In addition, a slice aware reconstruction technique is developed for noise-robust reconstruction while reducing the number of ACS lines. We conducted an evaluation study using retrospectively subsampled data obtained from three healthy volunteers at 3T MRI, involving three different slice thicknesses (1.5, 3.0, and 4.5 mm) and three different image contrasts (T1w, T2w, and FLAIR). RESULTS: Despite the challenges posed by substantial noise in cases with a limited number of ACS lines and thinner slices, the slice aware cycle interpolator network reconstructs the enhanced parallel images. It outperforms RAKI, effectively eliminating aliasing artifacts. Moreover, the proposed network outperforms GRAPPA and demonstrates the ability to successfully reconstruct brain images even under severe noisy conditions. CONCLUSIONS: The slice aware cycle interpolator network has the potential to improve reconstruction accuracy for a reduced number of ACS lines in noisy environments.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Relación Señal-Ruido , Imagen por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Humanos , Aprendizaje Profundo , Encéfalo/diagnóstico por imagen
3.
Magn Reson Med ; 90(1): 90-102, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36883726

RESUMEN

PURPOSE: To develop a fast, deep-learning approach for quantitative magnetization-transfer contrast (MTC)-MR fingerprinting (MRF) that simultaneously estimates multiple tissue parameters and corrects the effects of B0 and B1 variations. METHODS: An only-train-once recurrent neural network was designed to perform the fast tissue-parameter quantification for a large range of different MRF acquisition schedules. It enabled a dynamic scan-wise linear calibration of the scan parameters using the measured B0 and B1 maps, which allowed accurate, multiple-tissue parameter mapping. MRF images were acquired from 8 healthy volunteers at 3 T. Estimated parameter maps from the MRF images were used to synthesize the MTC reference signal (Zref ) through Bloch equations at multiple saturation power levels. RESULTS: The B0 and B1 errors in MR fingerprints, if not corrected, would impair the tissue quantification and subsequently corrupt the synthesized MTC reference images. Bloch equation-based numerical phantom studies and synthetic MRI analysis demonstrated that the proposed approach could correctly estimate water and semisolid macromolecule parameters, even with severe B0 and B1 inhomogeneities. CONCLUSION: The only-train-once deep-learning framework can improve the reconstruction accuracy of brain-tissue parameter maps and be further combined with any conventional MRF or CEST-MRF method.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Redes Neurales de la Computación , Agua , Mapeo Encefálico , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
4.
NMR Biomed ; 35(5): e4662, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34939236

RESUMEN

Magnetization transfer contrast MR fingerprinting (MTC-MRF) is a novel quantitative imaging method that simultaneously quantifies free bulk water and semisolid macromolecule parameters using pseudo-randomized scan parameters. To improve acquisition efficiency and reconstruction accuracy, the optimization of MRF sequence design has been of recent interest in the MRF field, but has been challenging due to the large number of degrees of freedom to be optimized in the sequence. Herein, we propose a framework for learning-based optimization of the acquisition schedule (LOAS), which optimizes RF saturation-encoded MRF acquisitions with a minimal number of scan parameters for tissue parameter determination. In a supervised learning framework, scan parameters were subsequently updated to minimize a predefined loss function that can directly represent tissue quantification errors. We evaluated the performance of the proposed approach with a numerical phantom and in in vivo experiments. For validation, MRF images were synthesized using the tissue parameters estimated from a fully connected neural network framework and compared with references. Our results showed that LOAS outperformed existing indirect optimization methods with regard to quantification accuracy and acquisition efficiency. The proposed LOAS method could be a powerful optimization tool in the design of MRF pulse sequences.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Redes Neurales de la Computación , Fantasmas de Imagen
5.
Magn Reson Med ; 85(4): 2040-2054, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33128483

RESUMEN

PURPOSE: To develop a fast, quantitative 3D magnetization transfer contrast (MTC) framework based on an unsupervised learning scheme, which will provide baseline reference signals for CEST and nuclear Overhauser enhancement imaging. METHODS: Pseudo-randomized RF saturation parameters and relaxation delay times were applied in an MR fingerprinting framework to generate transient-state signal evolutions for different MTC parameters. Prospectively compressed sensing-accelerated (four-fold) MR fingerprinting images were acquired from 6 healthy volunteers at 3 T. A convolutional neural network framework in an unsupervised fashion was designed to solve an inverse problem of a two-pool MTC Bloch equation, and was compared with a conventional Bloch equation-based fitting approach. The MTC images synthesized by the convolutional neural network architecture were used for amide proton transfer and nuclear Overhauser enhancement imaging as a reference baseline image. RESULTS: The fully unsupervised learning scheme incorporated with the two-pool exchange model learned a set of unique features that can describe the MTC-MR fingerprinting input, and allowed only small amounts of unlabeled data for training. The MTC parameter values estimated by the unsupervised learning method were in excellent agreement with values estimated by the conventional Bloch fitting approach, but dramatically reduced computation time by ~1000-fold. CONCLUSION: Given the considerable time efficiency compared to conventional Bloch fitting, unsupervised learning-based MTC-MR fingerprinting could be a powerful tool for quantitative MTC and CEST/nuclear Overhauser enhancement imaging.


Asunto(s)
Encéfalo , Aprendizaje Automático no Supervisado , Amidas , Humanos , Imagen por Resonancia Magnética , Protones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...