Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 192, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167422

RESUMEN

High-rate production of multicarbon chemicals via the electrochemical CO2 reduction can be achieved by efficient CO2 mass transport. A key challenge for C-C coupling in high-current-density CO2 reduction is how to promote *CO formation and dimerization. Here, we report molecularly enhanced CO2-to-*CO conversion and *CO dimerization for high-rate ethylene production. Nanoconfinement of ascorbic acid by graphene quantum dots enables immobilization and redox reversibility of ascorbic acid in heterogeneous electrocatalysts. Cu nanowire with ascorbic acid nanoconfined by graphene quantum dots (cAA-CuNW) demonstrates high-rate ethylene production with a Faradaic efficiency of 60.7% and a partial current density of 539 mA/cm2, a 2.9-fold improvement over that of pristine CuNW. Furthermore, under low CO2 ratio of 33%, cAA-CuNW still exhibits efficient ethylene production with a Faradaic efficiency of 41.8%. We find that cAA-CuNW increases *CO coverage and optimizes the *CO binding mode ensemble between atop and bridge for efficient C-C coupling. A mechanistic study reveals that ascorbic acid can facilitate *CO formation and dimerization by favorable electron and proton transfer with strong hydrogen bonding.

2.
ACS Appl Mater Interfaces ; 15(38): 45167-45176, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37699415

RESUMEN

Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-4 cm2 V-1 s-1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A-1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A-1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.

3.
ACS Appl Mater Interfaces ; 14(47): 53250-53260, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36382782

RESUMEN

With the advent of 5G wireless and Internet of Things technologies, flexible and stretchable printed circuit boards (PCBs) should be designed to address all the specifications necessary to receive signal transmissions, maintaining the signal integrity, and providing electrical connections. Here, we propose a silver nanoparticle (AgNP)/silver nanowire (AgNW) hybrid conductor and high-quality microprinting technology for fabricating flexible and stretchable PCBs in high-performance 5G wireless communication. A simple and low-cost reverse offset printing technique using a commercial adhesive hand-roller was adapted to ensure high-resolution and excellent pattern quality. The AgNP/AgNW micropatterns were fabricated in various line widths, from 5 µm to 5 mm. They exhibited excellent pattern qualities, such as fine line spacing, clear edge definition and outstanding pattern uniformity. After annealing via intense pulsed light irradiation, they showed outstanding electrical resistivity (15.7 µΩ cm). Moreover, they could withstand stretching up to a strain of 90% with a small change in resistance. As a demonstration of their practical application, the AgNP/AgNW micropatterns were used to fabricate 5G communication antennas that exhibited excellent wireless signal processing at operating frequencies in the C-band (4-8 GHz). Finally, a wearable sensor fabricated with these AgNP/AgNW micropatterns could successfully detected fine finger movements in real time with excellent sensitivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...