Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Adv Drug Deliv Rev ; 209: 115301, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38570141

RESUMEN

Subcutaneous (SC) injections can be associated with local pain and discomfort that is subjective and may affect treatment adherence and overall patient experience. With innovations increasingly focused on finding ways to deliver higher doses and volumes (≥2 mL), there is a need to better understand the multiple intertwined factors that influence pain upon SC injection. As a priority for the SC Drug Development & Delivery Consortium, this manuscript provides a comprehensive review of known attributes from published literature that contribute to pain/discomfort upon SC injection from three perspectives: (1) device and delivery factors that cause physical pain, (2) formulation factors that trigger pain responses, and (3) human factors impacting pain perception. Leveraging the Consortium's collective expertise, we provide an assessment of the comparative and interdependent factors likely to impact SC injection pain. In addition, we offer expert insights and future perspectives to fill identified gaps in knowledge to help advance the development of patient-centric and well tolerated high-dose/high-volume SC drug delivery solutions.

2.
BMJ ; 385: q726, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658040
3.
Arch Insect Biochem Physiol ; 115(2): e22089, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38409869

RESUMEN

Insecticide mode of action studies provide insights into how new insecticidal actives function and contribute to assessing safety to humans and nontarget organisms. Insect cell lines that express potential target sites can serve as valuable tools in this effort. In this paper, we report on the influence of two signaling molecules on protein expression in a nervous system cell line established from Spodoptera frugiperda (Bayer/BCIRL-SfNS2-0714-TR). We selected this line because we established it in our laboratory and we are experienced in using it. Cells were exposed to the insect developmental hormone (1 µg/mL 20-hydroxyecdysone, 20E) and/or a cyclooxygenase (COX) inhibitor (25 µM indomethacin, INDO; inhibits prostaglandin [PG] biosynthesis) for 24 h (Day 2), 72 h (Day 4), or 120 h (Day 6). We selected a PG biosynthesis inhibitor because PGs act in many aspects of insect biology, such as embryonic development, immunity, and protein phosphorylation. We selected the developmental hormone, 20E, because it also acts in fundamental aspects of insect biology. We identified specific proteins via in silico analysis. Changes in protein expression levels were determined using liquid chromatography-mass spectrometry (MS) + MS-MS. The largest number of changes in protein expression occurred on Day 2. The combination of 20E plus INDO led to 222 differentially expressed proteins, which documents the deep significance of PGs and 20E in insect biology. 20E and, separately, INDO led to changes in 30 proteins each (p value < 0.01; >2X or <0.5X-fold changes). We recorded changes in the expression of 9 or 12 proteins (20E), 10 or 6 proteins (INDO), and 21 or 20 proteins (20E + INDO) on D4 and D6, respectively. While the cell line was established from neuronal tissue, the differentially expressed proteins act in a variety of fundamental cell processes. In this paper, we moved beyond a list of proteins by providing detailed, Gene Ontology term analyses and enrichment, which offers an in-depth understanding of the influence of these treatments on the SfNS2 cells. Because proteins are active components of cell physiology in their roles as enzymes, receptors, elements of signaling transduction pathways, and cellular structures, changes in their expression levels under the influence of signaling molecules provide insights into their function in insect cell physiology.


Asunto(s)
Ecdisterona , Indometacina , Humanos , Animales , Ecdisterona/farmacología , Ecdisterona/metabolismo , Spodoptera/metabolismo , Insectos/metabolismo , Línea Celular , Hormonas , Sistema Nervioso/metabolismo , Proteínas de Insectos/metabolismo
5.
Cells ; 12(24)2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38132101

RESUMEN

Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)-frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS-FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL-PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10-PARL-PINK1 pathway.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Animales , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Mitofagia/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Quinasas/genética , Mamíferos/metabolismo , Metaloproteasas/genética
6.
Drug Deliv ; 30(1): 2252999, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37702020

RESUMEN

Subcutaneous (SC) infusion of large volumes at rapid flow rates has historically been limited by the glycosaminoglycan hyaluronan (HA), which forms a barrier to bulk fluid flow in the SC space. Recombinant human hyaluronidase PH20 (rHuPH20) depolymerizes HA, temporarily eliminating this barrier to rapid SC delivery of large volume co-administered therapeutics. Using a miniature pig model, in-line pressure and applied force to the delivery hardware were measured when subcutaneously infusing a representative macromolecule (human polyclonal immunoglobulin [Ig]), at varying concentrations and viscosities (20-200 mg/mL), co-formulated with and without rHuPH20 (2000 U/mL and 5000 U/mL). Maximal flow rate (Qmax) was calculated as the flow rate producing a statistically significant difference in mean applied force between injections administered with or without rHuPH20. There was a significant reduction in mean applied force required for SC delivery of 100 mg/mL Ig solution with 5000 U/mL rHuPH20 versus Ig solution alone. Similar significant reductions in mean applied force were observed for most Ig solution concentrations, ranging from 25-200 mg/mL when administered with or without 2000 U/mL rHuPH20. Qmax was inversely proportional to Ig solution viscosity and Qmax for solutions co-formulated with 5000 U/mL rHuPH20 was approximately double that of 2000 U/mL rHuPH20 solutions. Mathematical simulation of a hypothetical 800 mg Ig dose co-formulated with rHuPH20 showed that delivery times <30 s could be achieved across a broad range of concentrations. Addition of rHuPH20 can help overcome volume and time constraints associated with SC administration across a range of concentrations in a dose-dependent manner.


Asunto(s)
Anticuerpos , Hialuronoglucosaminidasa , Humanos , Porcinos , Animales , Porcinos Enanos , Viscosidad , Simulación por Computador , Ácido Hialurónico
7.
Proc Natl Acad Sci U S A ; 120(30): e2217128120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37463212

RESUMEN

Oxidative damage in the brain is one of the earliest drivers of pathology in Alzheimer's disease (AD) and related dementias, both preceding and exacerbating clinical symptoms. In response to oxidative stress, nuclear factor erythroid 2-related factor 2 (Nrf2) is normally activated to protect the brain from oxidative damage. However, Nrf2-mediated defense against oxidative stress declines in AD, rendering the brain increasingly vulnerable to oxidative damage. Although this phenomenon has long been recognized, its mechanistic basis has been a mystery. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that Slingshot homolog-1 (SSH1) drives this effect by acting as a counterweight to neuroprotective Nrf2 in response to oxidative stress and disease. Specifically, oxidative stress-activated SSH1 suppresses nuclear Nrf2 signaling by sequestering Nrf2 complexes on actin filaments and augmenting Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction, independently of SSH1 phosphatase activity. We also show that Ssh1 elimination in AD models increases Nrf2 activation, which mitigates tau and amyloid-ß accumulation and protects against oxidative injury, neuroinflammation, and neurodegeneration. Furthermore, loss of Ssh1 preserves normal synaptic function and transcriptomic patterns in tauP301S mice. Importantly, we also show that human AD brains exhibit highly elevated interactions of Nrf2 with both SSH1 and Keap1. Thus, we demonstrate here a unique mode of Nrf2 blockade that occurs through SSH1, which drives oxidative damage and ensuing pathogenesis in AD. Strategies to inhibit SSH1-mediated Nrf2 suppression while preserving normal SSH1 catalytic function may provide new neuroprotective therapies for AD and related dementias.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neuroprotección , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/fisiología
8.
J Biomol Struct Dyn ; : 1-10, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349880

RESUMEN

The mitochondria are responsible for producing energy within the cell, and in mitochondrial myopathy, there is a defect in the energy production process. The CHCHD10 gene codes for a protein called coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), which is found in the mitochondria and is involved in the regulation of mitochondrial function. G58R mutation has been shown to disrupt the normal function of CHCHD10, leading to mitochondrial dysfunction and ultimately to the development of mitochondrial myopathy. The structures of G58R mutant CHCHD10 and how G58R mutation impacts the wild-type CHCHD10 protein at the monomeric level are unknown. To address this problem, we conducted homology modeling, multiple run molecular dynamics simulations and bioinformatics calculations. We represent herein the structural ensemble properties of the G58R mutant CHCHD10 (CHCHD10G58R) in aqueous solution. Moreover, we describe the impacts of G58R mutation on the structural ensembles of wild-type CHCHD10 (CHCHD10WT) in aqueous solution. The dynamics properties as well as structural properties of CHCHD10WT are impacted by the mitochondrial myopathy-related G58R mutation. Specifically, the secondary and tertiary structure properties, root mean square fluctuations, Ramachandran diagrams and results from principal component analysis demonstrate that the CHCHD10WT and CHCHD10G58R proteins possess different structural ensemble characteristics and describe the impacts of G58R mutation on CHCHD10WT. These findings may be helpful for designing new treatments for mitochondrial myopathy.Communicated by Ramaswamy H. Sarma.

9.
ACS Chem Neurosci ; 14(11): 2134-2145, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37194187

RESUMEN

The V57E pathological variant of the mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) plays a role in frontotemporal dementia. The wild-type and V57E mutant CHCHD10 proteins contain intrinsically disordered regions, and therefore, these regions hampered structural characterization of these proteins using conventional experimental tools. For the first time in the literature, we represent that the V57E mutation is pathogenic to mitochondria as it increases mitochondrial superoxide and impairs mitochondrial respiration. In addition, we represent here the structural ensemble properties of the V57E mutant CHCHD10 and describe the impacts of V57E mutation on the structural ensembles of wild-type CHCHD10 in aqueous solution. We conducted experimental and computational studies for this research. Namely, MitoSOX Red staining and Seahorse Mito Stress experiments, atomic force microscopy measurements, bioinformatics, homology modeling, and multiple-run molecular dynamics simulation computational studies were conducted. Our experiments show that the V57E mutation results in mitochondrial dysfunction, and our computational studies present that the structural ensemble properties of wild-type CHCHD10 are impacted by the frontotemporal dementia-associated V57E genetic mutation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Proteínas Mitocondriales/química , Mitocondrias/metabolismo , Mutación/genética , Esclerosis Amiotrófica Lateral/metabolismo
10.
J Pers Med ; 13(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37109086

RESUMEN

Understanding the regulatory mechanisms underlying corneal epithelial cell (CEC) proliferation in vitro may provide the means to boost CEC production in cell therapy for ocular disorders. The transcription factor ΔNp63 plays a crucial role in the proliferation of CECs, but the underlying mechanisms is yet to be elucidated. TP63 and ΔNp63 are encoded by the TP63 gene via alternative promoters. We previously reported that both ΔNp63 and activating transcription factor (ATF3) are substantially expressed in cultured CECs, but the regulatory relationship between ΔNp63 and ATF3 is unknown. In the present study, we found that ΔNp63 increased ATF3 expression and ATF3 promoter activity in cultured CECs. The deletion of the p63 binding core site reduced ATF3 promoter activity. CECs overexpressing ATF3 exhibited significantly greater proliferation than control CECs. ATF3 knockdown suppressed the ΔNp63-induced increase in cell proliferation. Overexpression of ATF3 in CECs significantly elevated protein and mRNA levels of cyclin D. The protein levels of keratin 3/14, integrin ß1, and involucrin did not differ between ATF3-overexpressing CECs, ATF3-downregulated CECs, and control cells. In conclusion, our results suggest that ΔNp63 increases CEC proliferation via the ΔNp63/ATF3/CDK pathway.

11.
Mol Oncol ; 17(6): 1076-1092, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37081807

RESUMEN

Hyaluronan (HA) is a key component of the dense extracellular matrix in breast cancer, and its accumulation is associated with poor prognosis and metastasis. Pegvorhyaluronidase alfa (PEGPH20) enzymatically degrades HA and can enhance drug delivery and treatment response in preclinical tumour models. Clinical development of stromal-targeted therapies would be accelerated by imaging biomarkers that inform on therapeutic efficacy in vivo. Here, PEGPH20 response was assessed by multiparametric magnetic resonance imaging (MRI) in three orthotopic breast tumour models. Treatment of 4T1/HAS3 tumours, the model with the highest HA accumulation, reduced T1 and T2 relaxation times and the apparent diffusion coefficient (ADC), and increased the magnetisation transfer ratio, consistent with lower tissue water content and collapse of the extracellular space. The transverse relaxation rate R2 * increased, consistent with greater erythrocyte accessibility following vascular decompression. Treatment of MDA-MB-231 LM2-4 tumours reduced ADC and dramatically increased tumour viscoelasticity measured by MR elastography. Correlation matrix analyses of data from all models identified ADC as having the strongest correlation with HA accumulation, suggesting that ADC is the most sensitive imaging biomarker of tumour response to PEGPH20.


Asunto(s)
Neoplasias de la Mama , Diagnóstico por Imagen de Elasticidad , Imágenes de Resonancia Magnética Multiparamétrica , Humanos , Femenino , Ácido Hialurónico/metabolismo , Microambiente Tumoral , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Imagen por Resonancia Magnética/métodos
12.
Curr Oncol ; 30(1): 769-785, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36661708

RESUMEN

We assessed the impact of COVID-19 on healthcare visits, timing of stage IV NSCLC diagnosis and immunotherapy initiation, and rates of switching to extended dosing schedules of immunotherapies among patients with stage IV NSCLC. This retrospective study examined electronic health record data of adult patients receiving treatment for stage IV NSCLC within The US Oncology Network and Onmark. Endpoints were compared for February-July 2019 (before COVID) vs. February-July 2020 (during COVID). The study found rapid decreases in numbers of patients with clinic/vital visits, immunotherapy initiations, and new diagnoses of stage IV NSCLC during April-May 2020 vs. April-May 2019. The rate of delays of immunotherapy administrations and proportions of patients with such delays increased from February to March of 2020. These patterns may have resulted from the increase in COVID-19 cases during this period and the corresponding quarantine and lockdowns. However, when comparing pre COVID-19 and during COVID-19 for May and after, the differences in delay of immuno-oncology administrations became less marked, likely due to lifting of lockdowns. The rate of switching from shorter to longer dosing schedules increased from May-July 2020. This was mainly attributed to pembrolizumab, likely due to FDA approval of the pembrolizumab 6W dosing schedule in April 2020.


Asunto(s)
COVID-19 , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Adulto , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/epidemiología , COVID-19/epidemiología , Neoplasias Pulmonares/terapia , Estudios Retrospectivos , Pandemias , Control de Enfermedades Transmisibles
13.
Am J Respir Cell Mol Biol ; 68(4): 417-429, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662576

RESUMEN

TAS2Rs (bitter taste receptors) are GPCRs (G protein-coupled receptors) expressed on human airway smooth muscle (HASM) cells; when activated by receptor agonists they evoke marked airway relaxation. In both taste and HASM cells, TAS2Rs activate a canonical Gßγ-mediated stimulation of Ca2+ release from intracellular stores by activation of PLCß (phospholipase Cß). Alone, this [Ca2+]i signaling does not readily account for relaxation, particularly since bronchoconstrictive agonists acting at Gq-coupled receptors also increase [Ca2+]i. We established that TAS2R14 activation in HASM promotes relaxation through F-actin (filamentous actin) severing. This destabilization of actin was from agonist-promoted activation (dephosphorylation) of cofilin, which was pertussis toxin sensitive. Cofilin dephosphorylation was due to TAS2R-mediated deactivation of LIM domain kinase. The link between early receptor action and the distal cofilin dephosphorylation was found to be the polarity protein partitioning defective 3 (Par3), a known binding partner with PLCß that inhibits LIM kinase. The physiologic relevance of this pathway was assessed using knock-downs of cofilin and Par3 in HASM cells and in human precision-cut lung slices. Relaxation by TAS2R14 agonists was ablated with knock-down of either protein as assessed by magnetic twisting cytometry in isolated cells or intact airways in the slices. Blocking [Ca2+]i release by TAS2R14 inhibited agonist-promoted cofilin dephosphorylation, confirming a role for [Ca2+]i in actin-modifying pathways. These results further elucidate the mechanistic basis of TAS2R-mediated HASM relaxation and point toward nodal points that may act as asthma or chronic obstructive pulmonary disease response modifiers or additional targets for novel bronchodilators.


Asunto(s)
Actinas , Asma , Receptores Acoplados a Proteínas G , Humanos , Actinas/metabolismo , Asma/metabolismo , Quinasas Lim/metabolismo , Pulmón/metabolismo , Relajación Muscular/fisiología , Receptores Acoplados a Proteínas G/metabolismo
14.
Proteins ; 91(6): 739-749, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36625206

RESUMEN

The G66V pathological variant of the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), mitochondrial, plays a role in Jokela type spinal muscular atrophy. The wild-type and G66V mutant-type CHCHD10 proteins contain intrinsically disordered regions, and therefore, their structural ensemble studies have been experiencing difficulties using conventional tools. Here, we show our results regarding the first characterization of the structural ensemble characteristics of the G66V mutant form of CHCHD10 and the first comparison of these characteristics with the structural ensemble properties of wild-type CHCHD10. We find that the structural properties, potential of mean force surfaces, and principal component analysis show stark differences between these two proteins. These results are important for a better pathology, biochemistry and structural biology understanding of CHCHD10 and its G66V genetic variant and it is likely that these reported structural properties are important for designing more efficient treatments for the Jokela type of spinal muscular atrophy disease.


Asunto(s)
Proteínas Mitocondriales , Atrofia Muscular Espinal , Humanos , Proteínas Mitocondriales/química , Mutación , Mitocondrias/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Células HeLa
15.
Am J Ophthalmol ; 251: 126-142, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36549584

RESUMEN

PURPOSE: To optimize artificial intelligence (AI) algorithms to integrate Scheimpflug-based corneal tomography and biomechanics to enhance ectasia detection. DESIGN: Multicenter cross-sectional case-control retrospective study. METHODS: A total of 3886 unoperated eyes from 3412 patients had Pentacam and Corvis ST (Oculus Optikgeräte GmbH) examinations. The database included 1 eye randomly selected from 1680 normal patients (N) and from 1181 "bilateral" keratoconus (KC) patients, along with 551 normal topography eyes from patients with very asymmetric ectasia (VAE-NT), and their 474 unoperated ectatic (VAE-E) eyes. The current TBIv1 (tomographic-biomechanical index) was tested, and an optimized AI algorithm was developed for augmenting accuracy. RESULTS: The area under the receiver operating characteristic curve (AUC) of the TBIv1 for discriminating clinical ectasia (KC and VAE-E) was 0.999 (98.5% sensitivity; 98.6% specificity [cutoff: 0.5]), and for VAE-NT, 0.899 (76% sensitivity; 89.1% specificity [cutoff: 0.29]). A novel random forest algorithm (TBIv2), developed with 18 features in 156 trees using 10-fold cross-validation, had a significantly higher AUC (0.945; DeLong, P < .0001) for detecting VAE-NT (84.4% sensitivity and 90.1% specificity; cutoff: 0.43; DeLong, P < .0001) and a similar AUC for clinical ectasia (0.999; DeLong, P = .818; 98.7% sensitivity; 99.2% specificity [cutoff: 0.8]). Considering all cases, the TBIv2 had a higher AUC (0.985) than TBIv1 (0.974; DeLong, P < .0001). CONCLUSIONS: AI optimization to integrate Scheimpflug-based corneal tomography and biomechanical assessments augments accuracy for ectasia detection, characterizing ectasia susceptibility in the diverse VAE-NT group. Some patients with VAE may have true unilateral ectasia. Machine learning considering additional data, including epithelial thickness or other parameters from multimodal refractive imaging, will continuously enhance accuracy. NOTE: Publication of this article is sponsored by the American Ophthalmological Society.


Asunto(s)
Queratocono , Humanos , Estudios Retrospectivos , Topografía de la Córnea/métodos , Queratocono/diagnóstico , Inteligencia Artificial , Dilatación Patológica/diagnóstico , Paquimetría Corneal/métodos , Estudios Transversales , Córnea/diagnóstico por imagen , Curva ROC , Tomografía/métodos
16.
Arch Insect Biochem Physiol ; 112(1): e21972, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36164283

RESUMEN

After reading contradictory claims of model status for some insect species, we feel a brief discussion of the topic may be useful. Here, we document a few examples where clarity on model status seems to be lacking, briefly review work on widely recognized models, and offer criteria for including any given species as a model organism.


Asunto(s)
Insectos , Modelos Animales , Animales , Insectos/fisiología
17.
J Cataract Refract Surg ; 49(1): 69-75, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36026693

RESUMEN

PURPOSE: To analyze the 6-month outcomes of the treatment combination of the monocular bi-aspheric ablation profile (PresbyMAX) and contralateral aspheric monofocal laser in situ keratomileusis (LASIK) ablation profile for correction of myopia and presbyopia. SETTING: Yonsei University College of Medicine and Eyereum Eye Clinic, Seoul, South Korea. DESIGN: Retrospective case series. METHODS: This was a retrospective case review of 92 patients (184 eyes) diagnosed with myopia who underwent uneventful simultaneous bi-aspheric ablation in the nondominant eye and aspheric monofocal regular LASIK in the dominant eye to correct myopia and presbyopia between January 2017 and August 2020. Monocular and binocular uncorrected distance visual acuity (UDVA) and near visual acuity (UNVA), and corrected distance visual acuity and near visual acuity were analyzed postoperatively. RESULTS: At 6 months postoperatively, the mean UDVAs (logMAR) in the dominant and nondominant eyes were 0.01 ± 0.02 and 0.26 ± 0.15, respectively. Furthermore, all treated dominant eyes achieved 20/20 or better monocular UDVA, and 84% achieved 20/16 or better monocular UDVA. In the nondominant treated eyes, 89% achieved 20/50 or better monocular UDVA, 78% achieved 20/40 or better, and 34% achieved 20/32 or better. The binocular cumulative UDVA at 6 months postoperatively was 20/20 or better in all patients. All patients achieved J2 or better in binocular cumulative UNVA, and 83% achieved J1. CONCLUSIONS: Presbyopia correction using the combination of PresbyMAX in the near eye and aspheric monofocal regular LASIK in the distant eye is a safe and effective treatment for presbyopia in patients with myopia.


Asunto(s)
Queratomileusis por Láser In Situ , Miopía , Presbiopía , Humanos , Presbiopía/cirugía , Estudios Retrospectivos , Visión Binocular , Topografía de la Córnea , Córnea/cirugía , Miopía/cirugía , Resultado del Tratamiento , Láseres de Excímeros , Refracción Ocular
18.
Cell ; 185(21): 3913-3930.e19, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36198316

RESUMEN

Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Caracteres Sexuales , Tauopatías/genética , Tauopatías/patología , Tioléster Hidrolasas/genética , Proteasas Ubiquitina-Específicas , Proteínas tau/genética
19.
AAPS J ; 24(6): 110, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266598

RESUMEN

Multiple FDA-approved and clinical-development stage therapeutics include recombinant human hyaluronidase PH20 (rHuPH20) to facilitate subcutaneous administration. As rHuPH20-reactive antibodies potentially interact with endogenous PH20, we investigated rHuPH20 immunogenicity risk through hyaluronidase tissue expression, predicted B cell epitopes, CD4+ T cell stimulation indices and related these to observed clinical immunogenicity profiles from 18 clinical studies. Endogenous hyaluronidase PH20 expression in humans/mice was assessed by reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative RT-PCR, and deep RNA-Seq. rHuPH20 potential T cell epitopes were evaluated in silico and confirmed in vitro. Potential B cell epitopes were predicted for rHuPH20 sequence in silico, and binding of polyclonal antibodies from various species tested on a rHuPH20 peptide microarray. Clinical immunogenicity data were collected from 2643 subjects. From 57 human adult and fetal tissues previously screened by RT-PCR, 22 tissue types were analyzed by deep RNA-Seq. Hyaluronidase PH20 messenger RNA expression was detected in adult human testes. In silico analyses of the rHuPH20 sequence revealed nine T cell epitope clusters with immunogenic potential, one cluster was homologous to human leukocyte antigen. rHuPH20 induced T cell activation in 6-10% of peripheral blood mononuclear cell donors. Fifteen epitopes in the rHuPH20 sequence had the potential to cross-react with B cells. The cumulative treatment-induced incidence of anti-rHuPH20 antibodies across clinical studies was 8.8%. Hyaluronidase PH20 expression occurs primarily in adult testes. Low CD4+ T cell activation and B cell cross-reactivity by rHuPH20 suggest weak rHuPH20 immunogenicity potential. Restricted expression patterns of endogenous PH20 indicate low immunogenicity risk of subcutaneous rHuPH20.


Asunto(s)
Epítopos de Linfocito T , Hialuronoglucosaminidasa , Humanos , Adulto , Masculino , Ratones , Animales , Hialuronoglucosaminidasa/genética , Hialuronoglucosaminidasa/metabolismo , Epítopos de Linfocito T/genética , Epítopos de Linfocito B , Leucocitos Mononucleares , Proteínas Recombinantes/metabolismo , Testículo/metabolismo , Anticuerpos , Factores de Riesgo , ARN Mensajero , ADN Polimerasa Dirigida por ARN
20.
Front Aging Neurosci ; 14: 933979, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092812

RESUMEN

Increasing evidence indicates that the accumulation misfolded proteins in Alzheimer's disease (AD) arises from clearance defects in the autophagy-lysosome pathway. Misfolded proteins such as Aß and tau are secreted in small extracellular vesicles (i.e., exosomes) and are propagated from cell to cell in part through secreted small extracellular vesicles (sEVs). Recent studies suggest that autophagic activity and exosome secretion are coregulated events, and multiple autophagy-related proteins are found in sEVs, including the cargo receptors Sqstm1/p62 and optineurin. However, whether and how autophagy cargo receptors per se regulate the secretion of sEVs is unknown. Moreover, despite the prominent role of actin dynamics in secretory vesicle release, its role in EV secretion is unknown. In this study, we leveraged the dual axes of Slingshot Homolog-1 (SSH1), which inhibits Sqstm1/p62-mediated autophagy and activates cofilin-mediated actin dynamics, to study the regulation of sEV secretion. Here we show that cargo receptors Sqstm1/p62 and optineurin inhibit sEV secretion, an activity that requires their ability to bind ubiquitinated cargo. Conversely, SSH1 increases sEV secretion by dephosphorylating Sqstm1/p62 at pSer403, the phospho-residue that allows Sqstm1/p62 to bind ubiquitinated cargo. In addition, increasing actin dynamics through the SSH1-cofilin activation pathway also increases sEV secretion, which is mimicked by latrunculin B treatment. Finally, Aß42 oligomers and mutant tau increase sEV secretion and are physically associated with secreted sEVs. These findings suggest that increasing cargo receptor engagement with autophagic cargo and reducing actin dynamics (i.e., SSH1 inhibition) represents an attractive strategy to promote misfolded protein degradation while reducing sEV-mediated cell to cell spread of pathology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...