Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Commun ; : 101001, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38863209

RESUMEN

Nucleotide-binding site and leucine-rich repeat (NLR) proteins are activated by detecting pathogen effectors, which in turn trigger host defenses and cell death. Although many NLRs have been identified, the mechanism responsible for NLR-triggered defense responses are still poorly understood. In this study, through GWAS approach, we identified a novel NLR gene, Blast Resistance Gene 8 (BRG8), conferring resistance to rice blast and bacterial blight diseases. Consistently, the BRG8 overexpression and complementation lines exhibited enhanced resistance to both pathogens. Subcellular localization assays showed that BRG8 localized in both cytoplasm and nucleus. More evidence revealed that nuclear-localized BRG8 enhanced rice immunity without hypersensitive response (HR)-like phenotype. Furthermore, we also demonstrated the CC domain of BRG8 not only physically interacted with itself, but also interacted with the KNOX Ⅱ protein HOMEOBOX ORYZA SATIVA59 (HOS59). Knockout of HOS59 in BRG8 background showed enhanced resistance to M. oryzae strain CH171 and Xoo strain CR4, similar to BRG8 background. In contrast, overexpression of HOS59 in BRG8 background, compromised the HR-like phenotype and resistance response. Further analysis revealed that HOS59 promotes the degradation of BRG8 via the 26S proteasome pathway. Collectively, our study highlights HOS59 as NLR immune regulators, fine-tune BRG8-mediated immune responses against pathogens, and provides new insights into NLR association and function in plant immunity.

2.
Front Plant Sci ; 13: 1004359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36407584

RESUMEN

DNA-binding with one finger (Dof) transcription factors have been demonstrated to regulate various stresses and developmental processes in plants. Their identification and comparative evolutionary analyses in cultivated and wild species of genus oryza were yet to be explored. In this context, we report a comprehensive genomics atlas of DNA-binding with one finger (Dof) family genes in 13 diverse rice genomes (five cultivated and eight rice wild-relatives) through a genome-wide scanning approach. A galore of 238 Dof genes, identified across the genus Oryza, are categorized into seven distinct subgroups by comparative phylogenetic analysis with the model plant Arabidopsis. Conserved motifs and gene structure analyses unveiled the prevalence of species- and subgroups-specific structural and functional diversity that is expediating with the evolutionary period. Our results indicate that Dof genes might have undergone strong purifying selections and segmental duplications to expand their gene family members in corresponding Oryza genomes. We speculate that miR2927 potentially targets the Dof domain to regulate gene expression under different climatic conditions, which are supported by in-silico and wet-lab experiments-based expression profiles. In a nutshell, we report several superior haplotypes significantly associated with early flowering in a treasure trove of 3,010 sequenced rice accessions and have validated these haplotypes with two years of field evaluation-based flowering data of a representative subpanel. Finally, we have provided some insights on the resolution of Oryza species phylogeny discordance and divergence highlighting the mosaic evolutionary history of the genus Oryza. Overall, this study reports a complete genomic landscape of the Dof family in cultivated and wild Oryza species that could greatly facilitate in fast-track development of early maturing and climate-resilient rice cultivars through modern haplotype-led breeding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...