Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611217

RESUMEN

Fluorinated polyurethane (FPU) is a new kind of polyurethane (PU) material with great applicational potential, which is attributed to its high bond energy C-F bonds. Its unique low surface energy, excellent thermal stability, and chemical stability have attracted considerable research attention. FPU with targeted performance can be precisely synthesized through designing fluorochemicals as hard segments, soft segments, or additives and changes to the production process to satisfy the needs of coatings, clothing textiles, and the aerospace and biomedical industries for materials that are hydrophobic and that are resistant to weathering, heat, and flames and that have good biocompatibility. Here, the synthesis, structure, properties, and applications of FPU are comprehensively reviewed. The aims of this research are to shed light on the design scheme, synthesis method, structure, and properties of FPU synthesized from different kinds of fluorochemicals and their applications in different fields and the prospects for the future development of FPU.

2.
Polymers (Basel) ; 15(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37299372

RESUMEN

Functional liquid fluoroelastomers are in high demand in new energy fields. And these materials have potential applications in high-performance sealing materials and as electrode materials. In this study, a novel high-performance hydroxyl-terminated liquid fluoroelastomer (t-HTLF) with a high fluorine content, temperature resistance, and curing efficiency was synthesised from a terpolymer of vinylidene fluoride (VDF), tetrafluoroethylene (TFE), and hexafluoropylene (HFP). A carboxyl-terminated liquid fluoroelastomer (t-CTLF) with controllable molar mass and end-group content was first prepared from a poly(VDF-ter-TFE-ter-HFP) terpolymer using a unique oxidative degradation method. Subsequently, an efficient "one-step" reduction of the carboxyl groups (COOH) in t-CTLF into hydroxyl groups (OH) was achieved via the functional-group conversion method using lithium aluminium hydride (LiAlH4) as the reductant. Thus, t-HTLF with a controllable molar mass and end-group content and highly active end groups was synthesised. Owing to the efficient curing reaction between OH and isocyanate groups (NCO), the cured t-HTLF exhibits good surface properties, thermal properties, and chemical stability. The thermal decomposition temperature (Td) of the cured t-HTLF reaches 334 °C, and it exhibits hydrophobicity. The oxidative degradation, reduction, and curing reaction mechanisms were also determined. The effects of solvent dosage, reaction temperature, reaction time, and ratio of the reductant to the COOH content on the carboxyl conversion were also systematically investigated. An efficient reduction system comprising LiAlH4 can not only achieve an efficient conversion of the COOH groups in t-CTLF to OH groups but also the in situ hydrogenation and addition reactions of residual double bonds (C=C) groups in the chain, such that the thermal stability and terminal activity of the product are improved while maintaining a high fluorine content.

3.
Polymers (Basel) ; 14(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36236041

RESUMEN

Two-dimensional (2D) transition-metal carbon/nitrogen/carbon nitride (MXene) has extremely high conductivity and easily modifiable surface functional groups. Compared with graphene, another 2D layered material, MXene is easily dispersed in water owing to its hydrophilic groups. Its unique characteristics make MXene a valuable material. Nanocomposites can be endowed with functionality when MXene is compounded with an elastomer. Particularly in electromagnetic interference shielding and sensing, MXene exhibits extraordinary properties. We review various preparation methods, properties, and applications of MXene and MXene/elastomer nanocomposites and present a summary of the prospects for MXene/elastomer nanocomposites, which are in their initial stage of development and providing promising results.

4.
RSC Adv ; 12(16): 9534-9542, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424957

RESUMEN

A novel bio-based thermoplastic vulcanizate (TPV) material consisting of poly(lactic acid) (PLA) and a novel polymeric slide ring material (SeRM) was fabricated via isocyanate-induced dynamic vulcanization. The microscopic morphology, thermal properties, biocompatibility, and mechanical properties of the SeRM/PLA TPV material were comprehensively investigated, in turn by transmission electron microscopy, differential scanning calorimetry, in vitro cytotoxicity test, electron tension machine, and molecular dynamics simulations. Phase inversion in TPV was observed during the dynamic vulcanization, and TEM images showed that SeRM particles that were dispersed in PLA continuous phase had an average diameter of 1-4 µm. Results also indicated that an optimum phase inversion morphology was obtained at the SeRM/PLA blending ratio of 70/30 w/w. Glass transition temperature of PLA was found to be slightly decreased, owing to the improvement in interface compatibility by chemically bonding the PCL side chains (of SeRM molecules) and PLA chains. The tensile strength and elongation at break of TPVs were approximately 14.7 MPa and 164%, respectively, at SeRM/PLA blending ratio of 70/30, owing to the unique sliding effect of SeRM molecules when subjected to deformations. Cytotoxicity test results proved that the bio-based TPVs were fully non-toxic to L929 cells. In such aspects we believe that the bio-based TPV can be a promising material in the biomedical applications as an alternative of traditional commodity plastics.

5.
RSC Adv ; 12(5): 3108-3118, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35425283

RESUMEN

In order to design and prepare liquid fluoroelastomers with different end groups, and reveal the relationship between the molecular chain structure and properties, we studied on the oxidation degradation method and functional group conversion method to prepare carboxyl-terminated and hydroxyl-terminated liquid fluoroelastomers, respectively. The reaction mechanisms were also deduced. Furthermore, the curing system was created for liquid fluoroelastomers, and systematically analyzed their properties. The sequence type and content of the -C[double bond, length as m-dash]C- and oxygen-containing groups in the samples were measured and characterized by attenuated total reflectance/Fourier transform infrared (ATR-FTIR) spectroscopy, 1H nuclear magnetic resonance (1H-NMR), 19F-NMR spectroscopy and chemical titration, the molecular weights of liquid fluoroelastomers were measured by gel permeation chromatography (GPC). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to examine the thermal properties, while a viscometer was used to measure the dynamic viscosity of the liquid fluoroelastomers. Then the mechanical and surface properties of the cured samples were examined by universal testing machine and contact angle measurement instrument, respectively. The results show that carboxyl-terminated liquid fluoroelastomer with 2.71 wt% carboxyl terminal groups can be prepared by oxidation degradation method. When lithium aluminium hydride (LiAlH4) was used as the reducing agent, it can efficiently convert carboxyl group to hydroxyl group with a conversion rate of more than 95%. In addition, it can be seen that the dynamic viscosity of the liquid fluoroelastomers were all decreased with the increase of temperature, and it is similar to about 10 Pa s at 70 °C. Compared with carboxyl-terminated liquid fluoroelastomers, hydroxyl-terminated liquid fluoroelastomers has higher curing reactivity, higher glass transition temperature (T g) and thermal decomposition temperature (T d), and better mechanical properties of cured samples. The two types of liquid fluoroelastomers with distinct end groups presented distinct hydrophilicity.

6.
Polymers (Basel) ; 14(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35267802

RESUMEN

Herein, high-performance electromagnetic interference (EMI) shielding bio-based composites were prepared by using EUG (Eucommia ulmoides gum) with a crystalline structure as the matrix and carbon nanotube (CNT)/graphene nanoplatelet (GNP) hybrids as the conductive fillers. The morphology of the CNT/GNP hybrids in the CNT/GNP/EUG composites showed the uniform distribution of CNTs and GNPs in EUG, forming a denser filler network, which afforded improved conductivity and EMI shielding effect compared with pure EUG. Accordingly, EMI shielding effectiveness values of the CNT/GNP/EUG composites reached 42 dB in the X-band frequency range, meeting the EMI shielding requirements for commercial products. Electromagnetic waves were mainly absorbed via conduction losses, multiple reflections from interfaces and interfacial dipole relaxation losses. Moreover, the CNT/GNP/EUG composites exhibited attractive mechanical properties and high thermal stability. The combination of excellent EMI shielding performance and attractive mechanical properties render the as-prepared CNT/GNP/EUG composites attractive candidates for various applications.

7.
ACS Omega ; 6(6): 4461-4469, 2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33623852

RESUMEN

Presenting a combination of sustainability and environmental friendliness, a new class of green and non-petroleum-based thermoplastic vulcanizates (TPVs) was successfully developed from silica-filled silicone rubber (FSR) and poly(butylene succinate) (PBS) via dynamic vulcanization. The phase morphology, interfacial compatibilization, and microstructural properties of FSR/PBS TPVs were investigated. Notably, a large number of FSR microparticles were observed and were dispersed in the continuous PBS phase, indicating complete phase inversion during the dynamic vulcanization. The fine phase morphology of FSR/PBS TPVs was achieved by a fine phase morphology of the SR/PBS premix, the good interfacial compatibility between the PBS phase and the cross-linked FSR phase, and complete phase inversion. The as-prepared TPVs possessed high tensile strength, good elastic behavior, easy processability, and reprocessability. These novel non-petroleum-based TPVs have potential applications in packagings, biomedical devices, and three-dimensional (3D) printing materials.

8.
RSC Adv ; 11(25): 14932-14940, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424025

RESUMEN

A series of sustainable and reprocessible thermoplastic polyester elastomers P(BF-PBSS)s were synthesized using dimethyl-2,5-furandicarboxylate, 1,4-butanediol, and synthetic low-molecular-weight biobased polyester (PBSS). The P(BF-PBSS)s contain poly(butylene 2,5-furandicarboxylate) (PBF) as their hard segment and PBSS as their soft segment. The microstructures of the P(BF-PBSS)s were confirmed by nuclear magnetic resonance, demonstrating that a higher content of the soft segment was incorporated into P(BF-PBSS)s with higher PBSS content. Interestingly, dynamic mechanical analysis indicated that P(BF-PBSS)s comprised two domains: crystalline PBF and a mixture of amorphous PBF and PBSS. Consequently, the microphase separations of P(BF-PBSS)s were mainly induced by the crystallization of their PBF segments. More importantly, the thermal, crystallization, and mechanical properties could be tailored by tuning the PBSS content. Our results indicate that the as-prepared P(BF-PBSS)s are renewable, thermally stable, and nontoxic, and have good tensile properties, indicating that they could be potentially applied in biomedical materials.

9.
Nanotechnology ; 31(7): 075702, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-31639783

RESUMEN

Flexible electronics is expected to be one of the most active research areas in the next decade. In this study, a mechanically strong and flexible epoxy/GnP composite film was fabricated having a percolation threshold of electrical conductivity at 1.08 vol% GnPs and high thermal conductivity as 1.07 W m-1 K-1 at 10 vol% GnPs. The composite film shows high mechanical performance: Young's modulus and tensile strength were improved by 1344% and 66.7%, respectively, at 10 vol%. The film demonstrated high sensitivity to various mechanical loads: (i) it has gauge factors of 2 at strain range 0%-7% and 6 at range 7%-10%; (ii) it gives good electrical response with bending and twisting angles up to 180°; and (iii) it displays a good compressive load response up to 2 N where the absolute value of electrical resistance change increased by 71%. Furthermore, the film showed an excellent reliability up to 5.5 × 103 cycles with minor zero-point error. Above 20 °C, the film solely acts as a temperature sensor; upon cyclic temperature testing, the film demonstrated a stable resistive response in the range of 30-75 °C with a temperature sensitivity coefficient of 0.0063 °C-1. This flexible composite film has remarkable properties that enable it to be used as a full-fledged sensor for universal applications in aerospace, automotive and civil engineering.

10.
RSC Adv ; 9(65): 38105-38113, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-35541790

RESUMEN

Fluoroelastomers (FKM) are vital sealing materials in acidic environment and their failure can cause severe safety problems. Therefore, investigation of the degradation behavior and mechanism of FKM materials is of great significant. Herein, we investigate a diffusion model of an acidic solution into an FKM composite and its degradation behavior upon immersion in hot nitric acid solution. The results indicate that the diffusion process of the HNO3 solution into the FKM composite conforms to the Fick diffusion model at a low concentration of nitric acid solution. Besides, the concentration of HNO3 solution affects the diffusion process of solvent molecules and the dissolution process of the filler particles to some extent. SEM showed that the surface topography of the FKM was significantly altered after it was immersed in HNO3 solution. The structural and chemical changes of the FKM were studied using ATR-FTIR, SEM-EDS and MAS NMR, which demonstrated the occurrence of decrosslinking via hydrolysis of the crosslinks and backbone cleavage by dehydrofluorination. This was also manifested by the decrease in crosslinking degree and mechanical properties. The present study is helpful for revealing the chemical changes in FKM in hot HNO3 solution.

11.
RSC Adv ; 8(21): 11643-11651, 2018 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35542805

RESUMEN

Cardanol (CD), derived from renewable natural cashew nutshell liquid, has been used as a new plasticizer for polylactide (PLA), to create blends which retain the environmentally friendly features of PLA. The differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM) results all reveal that PLA and CD show good miscibility at low CD content. CD significantly decreased the glass transition temperature and enhanced the crystallization ability of PLA, demonstrating good plasticizing efficiency with PLA. At 10 wt% CD, ultimate elongation and impact toughness increased to 472% and 9.4 kJ m-2, respectively, which represented improvements of 31-fold and 2.6-fold over the corresponding measurements for neat PLA. The plasticization effect of CD was also demonstrated by the decreased melt complex viscosity and shear storage modulus at lower CD content for the blends when compared with neat PLA. Thus, the investigated CD presents an interesting candidate for a PLA plasticizer, meeting "double green" criteria. No cytotoxicity was found for the blends and hence they may be suitable for biomedical applications.

12.
J Mater Chem B ; 2(45): 7877-7886, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32262077

RESUMEN

Novel biobased isosorbide-containing copolyesters (PBISI copolyesters) with both biocompatibility and sustainability were synthesized by using commercially available biobased diols and diacids. Due to the presence of itaconate in copolyesters, it can be readily crosslinked by peroxide into a crystallizable network. The structure and thermal properties of PBISI copolyesters were determined by 1H NMR, FTIR, DSC, and WAXD. The chain composition, melting point and crystallinity of the PBISI copolyesters can be tuned continuously by changing the content of isosorbide. The crosslinked copolyester is demonstrated to be a promising shape memory polymer (SMP) with excellent shape memory properties including shape fixity and shape recovery rate close to 100%. The switching temperatures of PBISI-based SMPs can be tuned between 26 °C and 54 °C by altering the composition of PBISI copolyesters and curing extent. Cell adhesion and proliferation were adopted to evaluate the potential biocompatibility of PBISI-based SMPs, and the results indicated that all the PBISI-based SMPs were essentially noncytotoxic, making them suitable for fabricating biomedical devices.

13.
ACS Appl Mater Interfaces ; 4(8): 4006-14, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22817474

RESUMEN

Boehmite (BM) nanoplatelets were adopted to compound with fully biobased poly(propylene sebacate) (PPSe) to form the shape memory composites. The PPSe/BM composites kept excellent shape memory properties as previously reported PPSe. Compared to neat PPSe, the composites possess much higher mechanical properties above the melting point and faster biodegradation rate, which was demonstrated via tensile test at elevated temperature and in vitro degradation experiments in phosphate buffer saline (PBS), respectively. The obviously improved mechanical properties at elevated temperature are attributed to the uniform dispersion of the reinforcing boehmite nanoplatelets, which was facilitated by the interfacial interaction between BM and PPSe as revealed by FTIR, XPS, and XRD results. The faster degradation is correlated to accelerated hydrolysis by basic boehmite with surface aluminols. The potential biocompatibility, as substantiated by the outstanding cell viability and cell attachment, together with the realization of transformation temperature close to body temperature makes the PPSe/BM composites suitable for the biomedical applications, such as stents, in human body.


Asunto(s)
Hidróxido de Aluminio/química , Óxido de Aluminio/química , Materiales Biocompatibles/química , Nanoestructuras/química , Poliésteres/química , Polímeros/química , Animales , Biodegradación Ambiental , Supervivencia Celular , Humanos , Ensayo de Materiales , Ratones , Microscopía Electrónica de Rastreo/métodos , Microscopía Electrónica de Transmisión/métodos , Peso Molecular , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Estrés Mecánico , Temperatura , Resistencia a la Tracción , Sales de Tetrazolio/farmacología , Tiazoles/farmacología , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...