Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 12(3): 250, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33674559

RESUMEN

Tumors are composed of subpopulations of cancer cells with functionally distinct features. Intratumoral heterogeneity limits the therapeutic effectiveness of cancer drugs. To address this issue, it is important to understand the regulatory mechanisms driving a subclonal variety within a therapy-resistant tumor. We identified tumor subclones of HN9 head and neck cancer cells showing distinct responses to radiation with different levels of p62 expression. Genetically identical grounds but epigenetic heterogeneity of the p62 promoter regions revealed that radioresistant HN9-R clones displayed low p62 expression via the creation of repressive chromatin architecture, in which cooperation between DNMT1 (DNA methyltransferases 1) and HDAC1 (histone deacetylases 1) resulted in DNA methylation and repressive H3K9me3 and H3K27me3 marks in the p62 promoter. Combined inhibition of DNMT1 and HDAC1 by genetic depletion or inhibitors enhanced the suppressive effects on proliferative capacity and in vivo tumorigenesis following irradiation. Importantly, ectopically p62-overexpressed HN9-R clones increased the induction of senescence along with p62-dependent autophagy activation. These results demonstrate the heterogeneous expression of p62 as the key component of clonal variation within a tumor against irradiation. Understanding the epigenetic diversity of p62 heterogeneity among subclones allows for improved identification of the functional state of subclones and provides a novel treatment option to resolve resistance to current therapies.


Asunto(s)
Autofagia/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Epigénesis Genética , Neoplasias de Cabeza y Cuello/radioterapia , Tolerancia a Radiación , Proteína Sequestosoma-1/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Acetilación , Animales , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Islas de CpG , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Heterogeneidad Genética , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Histona Desacetilasa 1/metabolismo , Humanos , Masculino , Ratones Desnudos , Regiones Promotoras Genéticas , Tolerancia a Radiación/genética , Proteína Sequestosoma-1/genética , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Sci Rep ; 10(1): 7620, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32376896

RESUMEN

Epithelial-mesenchymal transition (EMT) is a major cellular process in which epithelial cells lose cell polarity and cell-cell adhesion and become motility and invasiveness by transforming into mesenchymal cells. Catechol is one of the natural compounds present in fruits and vegetables and has various pharmacological and physiological activities including anti-carcinogenic effects. However, the effects of catechol on EMT has not been reported. Epidermal growth factor (EGF) is one of the growth factors and is known to play a role in inducing EMT. The present study showed that catechol suppressed not only the morphological changes to the mesenchymal phenotype of epithelial HCC cells, but also the reduction of E-cadherin and the increment of Vimentin, which are typical hallmark of EMT. In addition, catechol suppressed EMT-related steps such as migration, invasion, anoikis resistance acquisition, and stem cell-like characterization through the EGFR-AKT-ERK signaling pathway during liver cancer metastasis. Therefore, these results suggest that catechol may be able to regulate the early metastasis of liver cancer in vitro.


Asunto(s)
Carcinoma Hepatocelular/patología , Catecoles/farmacología , Factor de Crecimiento Epidérmico/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Hepáticas/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Invasividad Neoplásica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción de la Familia Snail/metabolismo
3.
J Clin Invest ; 129(6): 2431-2445, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31081803

RESUMEN

How altered metabolism contributes to chemotherapy resistance in cancer cells remains unclear. Through a metabolism-related kinome RNAi screen, we identified inositol-trisphosphate 3-kinase B (ITPKB) as a critical enzyme that contributes to cisplatin-resistant tumor growth. We demonstrated that inositol 1,3,4,5-tetrakisphosphate (IP4), the product of ITPKB, plays a critical role in redox homeostasis upon cisplatin exposure by reducing cisplatin-induced ROS through inhibition of a ROS-generating enzyme, NADPH oxidase 4 (NOX4), which promotes cisplatin-resistant tumor growth. Mechanistically, we identified that IP4 competes with the NOX4 cofactor NADPH for binding and consequently inhibits NOX4. Targeting ITPKB with shRNA or its small-molecule inhibitor resulted in attenuation of NOX4 activity, imbalanced redox status, and sensitized cancer cells to cisplatin treatment in patient-derived xenografts. Our findings provide insight into the crosstalk between kinase-mediated metabolic regulation and platinum-based chemotherapy resistance in human cancers. Our study also suggests a distinctive signaling function of IP4 that regulates NOX4. Furthermore, pharmaceutical inhibition of ITPKB displayed synergistic attenuation of tumor growth with cisplatin, suggesting ITPKB as a promising synthetic lethal target for cancer therapeutic intervention to overcome cisplatin resistance.


Asunto(s)
Cisplatino/farmacología , Resistencia a Antineoplásicos , NADPH Oxidasa 4/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Transducción de Señal , Células A549 , Animales , Femenino , Humanos , Ratones , Ratones Desnudos , NADPH Oxidasa 4/genética , Proteínas de Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Oxidación-Reducción/efectos de los fármacos , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Cancer Cell ; 34(2): 315-330.e7, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-30033091

RESUMEN

Platinum-based chemotherapeutics represent a mainstay of cancer therapy, but resistance limits their curative potential. Through a kinome RNAi screen, we identified microtubule-associated serine/threonine kinase 1 (MAST1) as a main driver of cisplatin resistance in human cancers. Mechanistically, cisplatin but no other DNA-damaging agents inhibit the MAPK pathway by dissociating cRaf from MEK1, while MAST1 replaces cRaf to reactivate the MAPK pathway in a cRaf-independent manner. We show clinical evidence that expression of MAST1, both initial and cisplatin-induced, contributes to platinum resistance and worse clinical outcome. Targeting MAST1 with lestaurtinib, a recently identified MAST1 inhibitor, restores cisplatin sensitivity, leading to the synergistic attenuation of cancer cell proliferation and tumor growth in human cancer cells and patient-derived xenograft models.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , MAP Quinasa Quinasa 1/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-raf/fisiología , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Activación Enzimática , Femenino , Humanos , Ratones
5.
J Med Food ; 21(8): 793-800, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30048215

RESUMEN

Obesity is the most common metabolic disease in developed countries and has become a global epidemic in recent years. Obesity is associated with various metabolic abnormalities, including glucose intolerance, insulin resistance, type 2 diabetes, dyslipidemia, and hypertension. Leaves from the plant Dendropanax morbiferus are beneficial to health as they contain high levels of vitamin C and tannin. There have been seminal studies on the anticancer, antimicrobial, antidiabetes, and antihyperglycemic effects of treatments with D. morbiferus trees. Herein, we investigated the toxicity of D. morbiferus water (DLW) extracts in vitro, and demonstrated no toxicity at 5-500 µg/mL in 24-72-h experiments with 3T3-L1 cells. The DLW increased cell viability at 48 h and inhibited adipogenesis in 3T3-L1 cells by reducing intracellular triglyceride levels and glucose uptake. In addition, mRNA and protein expression levels of adipogenesis-related genes were lowered by DLW, suggesting antiobesity effects in mouse 3T3-L1 cells. Because few studies have demonstrated cholesterol-lowering effects of D. morbiferus, we investigated the activities of adipogenic transcriptional factors following treatments of 3T3-L1 cells with D. morbiferus and observed increased CEBPα, CEBPß, PPARγ, and SREBP1 activities in the cells, indicating that DLW extracts inhibit adipogenesis.


Asunto(s)
Células 3T3-L1/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Araliaceae , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Células 3T3-L1/metabolismo , Animales , Fármacos Antiobesidad/uso terapéutico , Colesterol/metabolismo , Ratones , Fitoterapia , Extractos Vegetales/uso terapéutico , Triglicéridos/metabolismo
6.
BMC Cancer ; 18(1): 605, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843645

RESUMEN

BACKGROUND: Aberrant hyperactivation of epithelial proliferation, AKT signaling, and association with unopposed estrogen (E2) exposure is the most common endometrial cancer dysfunction. In the normal uterus, progesterone (P4) inhibits proliferation by coordinating stromal-epithelial cross-talk, which we previously showed is mediated by the function of Mitogen-inducible gene 6 (Mig-6). Despite their attractive characteristics, non-surgical conservative therapies based on progesterone alone have not been universally successful. One barrier to this success has been the lack of understanding of the P4 effect on endometrial cells. METHOD: To further understand the role of Mig-6 and P4 in controlling uterine proliferation, we developed a Sprr2f-cre driven mouse model where Mig-6 is specifically ablated only in the epithelial cells of the uterus (Sprr2f cre+ Mig-6 f/f ). We examined P4 effect and regulation of AKT signaling in the endometrium of mutant mice. RESULTS: Sprr2f cre+ Mig-6 f/f mice developed endometrial hyperplasia. P4 treatment abated the development of endometrial hyperplasia and restored morphological and histological characteristics of the uterus. P4 treatment reduced cell proliferation which was accompanied by decreased AKT signaling and the restoration of stromal PGR and ESR1 expression. Furthermore, our in vitro studies revealed an inhibitory effect of MIG-6 on AKT phosphorylation as well as MIG-6 and AKT protein interactions. CONCLUSIONS: These data suggest that endometrial epithelial cell proliferation is regulated by P4 mediated Mig-6 inhibition of AKT phosphorylation, uncovering new mechanisms of P4 action. This information may help guide more effective non-surgical interventions in the future.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Endometriales/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Progesterona/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proliferación Celular , Proteínas Ricas en Prolina del Estrato Córneo/genética , Endometrio/citología , Endometrio/metabolismo , Endometrio/patología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Modelos Animales , Fosforilación , Receptores de Progesterona/metabolismo , Transducción de Señal
7.
Mol Cell ; 69(6): 923-937.e8, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29547721

RESUMEN

Dietary supplements such as vitamins and minerals are widely used in the hope of improving health but may have unidentified risks and side effects. In particular, a pathogenic link between dietary supplements and specific oncogenes remains unknown. Here we report that chondroitin-4-sulfate (CHSA), a natural glycosaminoglycan approved as a dietary supplement used for osteoarthritis, selectively promotes the tumor growth potential of BRAF V600E-expressing human melanoma cells in patient- and cell line-derived xenograft mice and confers resistance to BRAF inhibitors. Mechanistically, chondroitin sulfate glucuronyltransferase (CSGlcA-T) signals through its product CHSA to enhance casein kinase 2 (CK2)-PTEN binding and consequent phosphorylation and inhibition of PTEN, which requires CHSA chains and is essential to sustain AKT activation in BRAF V600E-expressing melanoma cells. However, this CHSA-dependent PTEN inhibition is dispensable in cancer cells expressing mutant NRAS or PI3KCA, which directly activate the PI3K-AKT pathway. These results suggest that dietary supplements may exhibit oncogene-dependent pro-tumor effects.


Asunto(s)
Carcinógenos/toxicidad , Transformación Celular Neoplásica/genética , Sulfatos de Condroitina/toxicidad , Suplementos Dietéticos/toxicidad , Melanoma/inducido químicamente , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/inducido químicamente , Animales , Antinematodos/farmacología , Quinasa de la Caseína II/metabolismo , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , GTP Fosfohidrolasas/genética , Células HEK293 , Células HT29 , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones Desnudos , Ratones Transgénicos , Células 3T3 NIH , Proteínas Nucleares/genética , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/metabolismo , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/genética , Factores de Transcripción/genética , Ensayos Antitumor por Modelo de Xenoinjerto
8.
J Med Food ; 20(12): 1152-1159, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29243967

RESUMEN

Porphyra tenera, also known as nori, is a red algal species of seaweed. It is cultivated in Asia for culinary purposes. We report that P. tenera extract (PTE) enhances the immune response in mouse macrophages. We found that P. tenera extract regulates the NF-κB IκB kinase (IKK) signaling pathway, and we assessed the expression and translocation of p65, a subunit of NF-κB, in RAW264.7 mouse macrophage cells after treatment with PTE. We also investigated the effects of 10% ethanol PTE (PTE10) in RAW264.7 cells. The production of IL-10, IL-6, TNF-α, and IFN-γ was induced by PTE treatment of the macrophages, and PTE also enhanced p-IκB and p-AKT. PTE10 showed no cytotoxicity at 10-20 µg/mL in RAW264.7 cells. PTE10, in fact, increased cell viability at 24 h, stimulated macrophage cells, and induced the phosphorylation of Akt. Akt stimulates IKK activity through the phosphorylation of IKKα and enhances immune activity through the activation of NF-κB. In this study, NF-κB activation was induced by increasing p-NF-κB and p-IKK. A subunit of NF-κB, p65, was located in the nucleus and increased the expression of various cytokines. PTE thus enhanced the immune response through IκB-α immunostimulation signaling in RAW264.7 cells. PTE10 has potential therefore for development of future treatments requiring immune system stimulation.


Asunto(s)
Macrófagos/efectos de los fármacos , Macrófagos/inmunología , FN-kappa B/inmunología , Extractos Vegetales/farmacología , Porphyra/química , Algas Marinas/química , Animales , Quinasa I-kappa B/genética , Quinasa I-kappa B/inmunología , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Ratones , FN-kappa B/genética , Fosforilación , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Transducción de Señal/efectos de los fármacos
9.
J Biol Chem ; 292(24): 10142-10152, 2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28468827

RESUMEN

Contributions of metabolic changes to cancer development and maintenance have received increasing attention in recent years. Although many human cancers share similar metabolic alterations, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Using an RNAi-based screen targeting the majority of the known metabolic proteins, we recently found that oncogenic BRAFV600E up-regulates HMG-CoA lyase (HMGCL), which converts HMG-CoA to acetyl-CoA and a ketone body, acetoacetate, that selectively enhances BRAFV600E-dependent MEK1 activation in human cancer. Here, we identified HMG-CoA synthase 1 (HMGCS1), the upstream ketogenic enzyme of HMGCL, as an additional "synthetic lethal" partner of BRAFV600E Although HMGCS1 expression did not correlate with BRAFV600E mutation in human melanoma cells, HMGCS1 was selectively important for proliferation of BRAFV600E-positive melanoma and colon cancer cells but not control cells harboring active N/KRAS mutants, and stable knockdown of HMGCS1 only attenuated colony formation and tumor growth potential of BRAFV600E melanoma cells. Moreover, cytosolic HMGCS1 that co-localized with HMGCL and BRAFV600E was more important than the mitochondrial HMGCS2 isoform in BRAFV600E-expressing cancer cells in terms of acetoacetate production. Interestingly, HMGCL knockdown did not affect HMGCS1 expression levels, whereas HMGCS1 knockdown caused a compensating increase in HMGCL protein level because of attenuated protein degradation. However, this increase did not reverse the reduced ketogenesis in HMGCS1 knockdown cells. Mechanistically, HMGCS1 inhibition decreased intracellular acetoacetate levels, leading to reduced BRAFV600E-MEK1 binding and consequent MEK1 activation. We conclude that the ketogenic HMGCS1-HMGCL-acetoacetate axis may represent a promising therapeutic target for managing BRAFV600E-positive human cancers.


Asunto(s)
Neoplasias del Colon/enzimología , Hidroximetilglutaril-CoA Sintasa/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Melanoma/enzimología , Proteínas de Neoplasias/metabolismo , Oxo-Ácido-Liasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Acetoacetatos/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Citosol/enzimología , Citosol/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Femenino , Humanos , Hidroximetilglutaril-CoA Sintasa/antagonistas & inhibidores , Hidroximetilglutaril-CoA Sintasa/genética , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , MAP Quinasa Quinasa 1/química , Melanoma/metabolismo , Melanoma/patología , Ratones Desnudos , Mutación , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Oxo-Ácido-Liasas/antagonistas & inhibidores , Oxo-Ácido-Liasas/química , Oxo-Ácido-Liasas/genética , Proteolisis , Proteínas Proto-Oncogénicas B-raf/genética , Interferencia de ARN , Carga Tumoral
10.
Cell Metab ; 25(2): 358-373, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28089569

RESUMEN

Lifestyle factors, including diet, play an important role in the survival of cancer patients. However, the molecular mechanisms underlying pathogenic links between diet and particular oncogenic mutations in human cancers remain unclear. We recently reported that the ketone body acetoacetate selectively enhances BRAF V600E mutant-dependent MEK1 activation in human cancers. Here we show that a high-fat ketogenic diet increased serum levels of acetoacetate, leading to enhanced tumor growth potential of BRAF V600E-expressing human melanoma cells in xenograft mice. Treatment with hypolipidemic agents to lower circulating acetoacetate levels or an inhibitory homolog of acetoacetate, dehydroacetic acid, to antagonize acetoacetate-BRAF V600E binding attenuated BRAF V600E tumor growth. These findings reveal a signaling basis underlying a pathogenic role of dietary fat in BRAF V600E-expressing melanoma, providing insights into the design of conceptualized "precision diets" that may prevent or delay tumor progression based on an individual's specific oncogenic mutation profile.


Asunto(s)
Grasas de la Dieta/efectos adversos , Cuerpos Cetónicos/metabolismo , Melanoma/patología , Mutación/genética , Proteínas Proto-Oncogénicas B-raf/genética , Ácido 3-Hidroxibutírico/farmacología , Acetoacetatos/administración & dosificación , Acetoacetatos/sangre , Acetoacetatos/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Hipolipemiantes/farmacología , Inyecciones Intraperitoneales , Melanoma/sangre , Ratones , Ratones Desnudos , Pironas/química , Pironas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Int J Biochem Cell Biol ; 81(Pt A): 76-81, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27793752

RESUMEN

Cancer cells are characterized by altered metabolic processes. Recent evidence of metabolic alterations has indicated that the fatty acid oxidation (FAO) pathway is used as a carbon source for anabolic processes in some tumors, thus making this pathway a potential target for therapy. The carnitine palmitoyltransferase (CPT; EC 2.3.1.21) enzyme transfers long-chain fatty acids from the cytosol to the mitochondrial matrix for ß-oxidation. Because carnitine palmitoyl transferase 1a (CPT1a) is the rate-limiting enzyme for FAO, the authors evaluated the effects of CPT1A knock-down in BRAF V600E melanoma cell lines. The results showed that knock-down of CPT1A inhibited FAO and that CPT1A is critical for malignant V600E melanoma cells, particularly BRAF V600E melanoma cells. The proliferation and tumorigenesis in V600E melanoma were decrease after CPT1A knockdown. These results suggest that therapy for BRAF V600E melanoma can include targeting metabolic alterations. CPT1A is more important for lipid synthesis in V600E mutant melanoma cells than in wild-type BRAF melanoma cells.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Melanoma/metabolismo , Melanoma/patología , Terapia Molecular Dirigida , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Carcinogénesis/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Ratones , Oxidación-Reducción/efectos de los fármacos
12.
Nat Cell Biol ; 17(11): 1484-96, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26479318

RESUMEN

The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Lipogénesis , Neoplasias/metabolismo , Vía de Pentosa Fosfato , Fosfogluconato Deshidrogenasa/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Humanos , Neoplasias/patología , Estrés Oxidativo , Ribulosafosfatos/metabolismo , Transducción de Señal
13.
Mol Cell ; 59(3): 345-358, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26145173

RESUMEN

Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL expression is upregulated in BRAF V600E-expressing human primary melanoma and hairy cell leukemia cells. Suppression of HMGCL specifically attenuates proliferation and tumor growth potential of human melanoma cells expressing BRAF V600E. Mechanistically, active BRAF upregulates HMGCL through an octamer transcription factor Oct-1, leading to increased intracellular levels of HMGCL product, acetoacetate, which selectively enhances binding of BRAF V600E but not BRAF wild-type to MEK1 in V600E-positive cancer cells to promote activation of MEK-ERK signaling. These findings reveal a mutation-specific mechanism by which oncogenic BRAF V600E "rewires" metabolic and cell signaling networks and signals through the Oct-1-HMGCL-acetoacetate axis to selectively promote BRAF V600E-dependent tumor development.


Asunto(s)
Leucemia de Células Pilosas/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Melanoma/metabolismo , Factor 1 de Transcripción de Unión a Octámeros/metabolismo , Oxo-Ácido-Liasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal , Acetoacetatos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Regulación hacia Arriba
14.
Cancer Cell ; 27(2): 257-70, 2015 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-25670081

RESUMEN

How mitochondrial glutaminolysis contributes to redox homeostasis in cancer cells remains unclear. Here we report that the mitochondrial enzyme glutamate dehydrogenase 1 (GDH1) is commonly upregulated in human cancers. GDH1 is important for redox homeostasis in cancer cells by controlling the intracellular levels of its product alpha-ketoglutarate and subsequent metabolite fumarate. Mechanistically, fumarate binds to and activates a reactive oxygen species scavenging enzyme glutathione peroxidase 1. Targeting GDH1 by shRNA or a small molecule inhibitor R162 resulted in imbalanced redox homeostasis, leading to attenuated cancer cell proliferation and tumor growth.


Asunto(s)
Glutamato Deshidrogenasa/biosíntesis , Glutatión Peroxidasa/biosíntesis , Glutatión/metabolismo , Leucemia/genética , Mitocondrias/enzimología , Antioxidantes/metabolismo , Carcinogénesis , Fumaratos/metabolismo , Regulación Neoplásica de la Expresión Génica , Glutamato Deshidrogenasa/antagonistas & inhibidores , Glutamato Deshidrogenasa/genética , Glutatión Peroxidasa/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Leucemia/enzimología , Leucemia/patología , Mitocondrias/patología , Oxidación-Reducción , Cultivo Primario de Células , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Glutatión Peroxidasa GPX1
15.
J Biol Chem ; 289(38): 26533-26541, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25104357

RESUMEN

The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in regulation of glucose homoeostasis in mammalian cells. PDC flux depends on catalytic activity of the most important enzyme component pyruvate dehydrogenase (PDH). PDH kinase inactivates PDC by phosphorylating PDH at specific serine residues, including Ser-293, whereas dephosphorylation of PDH by PDH phosphatase restores PDC activity. The current understanding suggests that Ser-293 phosphorylation of PDH impedes active site accessibility to its substrate pyruvate. Here, we report that phosphorylation of a tyrosine residue Tyr-301 also inhibits PDH α 1 (PDHA1) by blocking pyruvate binding through a novel mechanism in addition to Ser-293 phosphorylation. In addition, we found that multiple oncogenic tyrosine kinases directly phosphorylate PDHA1 at Tyr-301, and Tyr-301 phosphorylation of PDHA1 is common in EGF-stimulated cells as well as diverse human cancer cells and primary leukemia cells from human patients. Moreover, expression of a phosphorylation-deficient PDHA1 Y301F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at distinct serine and tyrosine residues inhibits PDHA1 through distinct mechanisms to impact active site accessibility, which act in concert to regulate PDC activity and promote the Warburg effect.


Asunto(s)
Procesamiento Proteico-Postraduccional , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Células 3T3 , Sustitución de Aminoácidos , Animales , Metabolismo de los Hidratos de Carbono , Dominio Catalítico , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Factor de Crecimiento Epidérmico/fisiología , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Fosforilación Oxidativa , Fosforilación , Unión Proteica , Piruvato Deshidrogenasa (Lipoamida)/química , Piruvato Deshidrogenasa (Lipoamida)/genética , Ácido Pirúvico/química , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Carga Tumoral , Tirosina/metabolismo
16.
Mol Cell ; 55(4): 552-65, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25042803

RESUMEN

Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP(+) binding to 6PGD and formation of active 6PGD dimers, respectively. Moreover, we identified DLAT and ACAT2 as upstream acetyltransferases of K76 and K294, respectively, and HDAC4 as the deacetylase of both sites. Expressing acetyl-deficient mutants of 6PGD in cancer cells significantly attenuated cell proliferation and tumor growth. This is due in part to reduced levels of 6PGD products ribulose-5-phosphate and NADPH, which led to reduced RNA and lipid biosynthesis as well as elevated ROS. Furthermore, 6PGD activity is upregulated with increased lysine acetylation in primary leukemia cells from human patients, providing mechanistic insights into 6PGD upregulation in cancer cells.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/metabolismo , Acetiltransferasa de Residuos Dihidrolipoil-Lisina/metabolismo , Histona Desacetilasas/metabolismo , Leucemia/patología , Neoplasias Pulmonares/patología , Lisina/metabolismo , Fosfogluconato Deshidrogenasa/metabolismo , Acetilación , Animales , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia/metabolismo , Neoplasias Pulmonares/metabolismo , Ratones , NADP/metabolismo , Neoplasias Experimentales , Unión Proteica/fisiología , Multimerización de Proteína
17.
J Biol Chem ; 289(31): 21413-22, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24962578

RESUMEN

Many cancer cells rely more on aerobic glycolysis (the Warburg effect) than mitochondrial oxidative phosphorylation and catabolize glucose at a high rate. Such a metabolic switch is suggested to be due in part to functional attenuation of mitochondria in cancer cells. However, how oncogenic signals attenuate mitochondrial function and promote the switch to glycolysis remains unclear. We previously reported that tyrosine phosphorylation activates and inhibits mitochondrial pyruvate dehydrogenase kinase (PDK) and phosphatase (PDP), respectively, leading to enhanced inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) and consequently inhibition of pyruvate dehydrogenase complex (PDC) in cancer cells. In particular, Tyr-381 phosphorylation of PDP1 dissociates deacetylase SIRT3 and recruits acetyltransferase ACAT1 to PDC, resulting in increased inhibitory lysine acetylation of PDHA1 and PDP1. Here we report that phosphorylation at another tyrosine residue, Tyr-94, inhibits PDP1 by reducing the binding ability of PDP1 to lipoic acid, which is covalently attached to the L2 domain of dihydrolipoyl acetyltransferase (E2) to recruit PDP1 to PDC. We found that multiple oncogenic tyrosine kinases directly phosphorylated PDP1 at Tyr-94, and Tyr-94 phosphorylation of PDP1 was common in diverse human cancer cells and primary leukemia cells from patients. Moreover, expression of a phosphorylation-deficient PDP1 Y94F mutant in cancer cells resulted in increased oxidative phosphorylation, decreased cell proliferation under hypoxia, and reduced tumor growth in mice. Together, our findings suggest that phosphorylation at different tyrosine residues inhibits PDP1 through independent mechanisms, which act in concert to regulate PDC activity and promote the Warburg effect.


Asunto(s)
División Celular , Neoplasias/patología , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/antagonistas & inhibidores , Tirosina/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular Tumoral , Cartilla de ADN , Humanos , Ácido Láctico/metabolismo , Datos de Secuencia Molecular , Neoplasias/enzimología , Consumo de Oxígeno , Fosforilación , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/química , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Homología de Secuencia de Aminoácido
18.
Mol Cell ; 53(4): 534-48, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24486017

RESUMEN

Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here, we report that lysine acetylation of PDHA1 and PDP1 is common in epidermal growth factor (EGF)-stimulated cells and diverse human cancer cells. K321 acetylation inhibits PDHA1 by recruiting PDK1, and K202 acetylation inhibits PDP1 by dissociating its substrate PDHA1, both of which are important in promoting glycolysis in cancer cells and consequent tumor growth. Moreover, we identified mitochondrial ACAT1 and SIRT3 as the upstream acetyltransferase and deacetylase, respectively, of PDHA1 and PDP1, while knockdown of ACAT1 attenuates tumor growth. Furthermore, Y381 phosphorylation of PDP1 dissociates SIRT3 and recruits ACAT1 to PDC. Together, hierarchical, distinct posttranslational modifications act in concert to control molecular composition of PDC and contribute to the Warburg effect.


Asunto(s)
Acetil-CoA C-Acetiltransferasa/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Piruvato Deshidrogenasa (Lipoamida)/metabolismo , Sirtuina 3/metabolismo , Tirosina/química , Animales , Línea Celular Tumoral , Proliferación Celular , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Lisina/química , Masculino , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Trasplante de Neoplasias , Neoplasias/metabolismo , Fosforilación
19.
Nat Commun ; 4: 1790, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23653202

RESUMEN

How oncogenic signalling coordinates glycolysis and anabolic biosynthesis in cancer cells remains unclear. We recently reported that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1) regulates anabolic biosynthesis by controlling intracellular levels of its substrate 3-phosphoglycerate and product 2-phosphoglycerate. Here we report a novel mechanism in which Y26 phosphorylation enhances PGAM1 activation through release of inhibitory E19 that blocks the active site, stabilising cofactor 2,3-bisphosphoglycerate binding and H11 phosphorylation. We also report the crystal structure of H11-phosphorylated PGAM1 and find that phospho-H11 activates PGAM1 at least in part by promoting substrate 3-phosphoglycerate binding. Moreover, Y26 phosphorylation of PGAM1 is common in human cancer cells and contributes to regulation of 3-phosphoglycerate and 2-phosphoglycerate levels, promoting cancer cell proliferation and tumour growth. As PGAM1 is a negative transcriptional target of TP53, and is therefore commonly upregulated in human cancers, these findings suggest that Y26 phosphorylation represents an additional acute mechanism underlying phosphoglycerate mutase 1 upregulation.


Asunto(s)
Neoplasias/enzimología , Neoplasias/metabolismo , Fosfoglicerato Mutasa/química , Fosfoglicerato Mutasa/metabolismo , Fosfotirosina/metabolismo , 2,3-Difosfoglicerato/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular Tumoral , Proliferación Celular , Estabilidad de Enzimas , Ácidos Glicéricos/metabolismo , Glucólisis , Histidina/metabolismo , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias/patología , Fosforilación
20.
Mol Cell Biol ; 33(13): 2574-85, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23608533

RESUMEN

How invasive and metastatic tumor cells evade anoikis induction remains unclear. We found that knockdown of RSK2 sensitizes diverse cancer cells to anoikis induction, which is mediated through phosphorylation targets including apoptosis signal-regulating kinase 1 (ASK1) and cyclic AMP (cAMP) response element-binding protein (CREB). We provide evidence to show that RSK2 inhibits ASK1 by phosphorylating S83, T1109, and T1326 through a novel mechanism in which phospho-T1109/T1326 inhibits ATP binding to ASK1, while phospho-S83 attenuates ASK1 substrate MKK6 binding. Moreover, the RSK2→CREB signaling pathway provides antianoikis protection by regulating gene expression of protein effectors that are involved in cell death regulation, including the antiapoptotic factor protein tyrosine kinase 6 (PTK6) and the proapoptotic factor inhibitor-of-growth protein 3 (ING3). PTK6 overexpression or ING3 knockdown in addition to ASK1 knockdown further rescued the increased sensitivity to anoikis induction in RSK2 knockdown cells. These data together suggest that RSK2 functions as a signal integrator to provide antianoikis protection to cancer cells in both transcription-independent and -dependent manners, in part by signaling through ASK1 and CREB, and contributes to cancer cell invasion and tumor metastasis.


Asunto(s)
Anoicis/fisiología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular Tumoral/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Genes Supresores de Tumor , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , MAP Quinasa Quinasa 6/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilación , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal/genética , Transcripción Genética , Proteínas Supresoras de Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...