Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Sci Rep ; 14(1): 6776, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514712

RESUMEN

Given the intricate etiology and pathogenesis of atopic dermatitis (AD), the complete cure of AD remains challenging. This study aimed to investigate if topically applying N-benzyl-N-methyldecan-1-amine (BMDA), derived from garlic, and its derivative [decyl-(4-methoxy-benzyl)-methyl-1-amine] (DMMA) could effectively alleviate AD-like skin lesions in 2,4-dinitrochlorobenzene (DNCB)-treated mice. Administering these compounds to the irritated skin of DNCB-treated mice significantly reduced swelling, rash, and excoriation severity, alongside a corresponding decrease in inflamed epidermis and dermis. Moreover, they inhibited spleen and lymph node enlargement and showed fewer infiltrated mast cells in the epidermis and dermis through toluidine-blue staining. Additionally, they led to a lower IgE titer in mouse sera as determined by ELISA, compared to vehicle treatment. Analyzing skin tissue from the mice revealed decreased transcript levels of inflammatory cytokines (TNF-α, IL-1ß, and IL-6), IL-4, iNOS, and COX-2, compared to control mice. Simultaneously, the compounds impeded the activation of inflammation-related signaling molecules such as JNK, p38 MAPK, and NF-κB in the mouse skin. In summary, these findings suggest that BMDA and DMMA hold the potential to be developed as a novel treatment for healing inflammatory AD.


Asunto(s)
Dermatitis Atópica , Ajo , Anhídridos Maleicos , Animales , Ratones , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/patología , Dinitroclorobenceno/toxicidad , Piel/patología , Citocinas , Aminas/farmacología , FN-kappa B/farmacología , Ratones Endogámicos BALB C
2.
BMC Bioinformatics ; 24(1): 447, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012571

RESUMEN

BACKGROUND: Aptamers, which are biomaterials comprised of single-stranded DNA/RNA that form tertiary structures, have significant potential as next-generation materials, particularly for drug discovery. The systematic evolution of ligands by exponential enrichment (SELEX) method is a critical in vitro technique employed to identify aptamers that bind specifically to target proteins. While advanced SELEX-based methods such as Cell- and HT-SELEX are available, they often encounter issues such as extended time consumption and suboptimal accuracy. Several In silico aptamer discovery methods have been proposed to address these challenges. These methods are specifically designed to predict aptamer-protein interaction (API) using benchmark datasets. However, these methods often fail to consider the physicochemical interactions between aptamers and proteins within tertiary structures. RESULTS: In this study, we propose AptaTrans, a pipeline for predicting API using deep learning techniques. AptaTrans uses transformer-based encoders to handle aptamer and protein sequences at the monomer level. Furthermore, pretrained encoders are utilized for the structural representation. After validation with a benchmark dataset, AptaTrans has been integrated into a comprehensive toolset. This pipeline synergistically combines with Apta-MCTS, a generative algorithm for recommending aptamer candidates. CONCLUSION: The results show that AptaTrans outperforms existing models for predicting API, and the efficacy of the AptaTrans pipeline has been confirmed through various experimental tools. We expect AptaTrans will enhance the cost-effectiveness and efficiency of SELEX in drug discovery. The source code and benchmark dataset for AptaTrans are available at https://github.com/pnumlb/AptaTrans .


Asunto(s)
Aptámeros de Nucleótidos , Aptámeros de Nucleótidos/química , Técnica SELEX de Producción de Aptámeros/métodos , Programas Informáticos , Redes Neurales de la Computación , Algoritmos , Ligandos
3.
Anim Cells Syst (Seoul) ; 27(1): 208-218, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808549

RESUMEN

Circular RNA (circRNA) is a non-coding RNA with a covalently closed loop structure and usually more stable than messenger RNA (mRNA). However, coding sequences (CDSs) following an internal ribosome entry site (IRES) in circRNAs can be translated, and this property has been recently utilized to produce proteins as novel therapeutic tools. However, it is difficult to produce large proteins from circRNAs because of the low circularization efficiency of lengthy RNAs. In this study, we report that we successfully synthesized circRNAs with the splint DNA ligation method using RNA ligase 1 and the splint DNAs, which contain complementary sequences to both ends of precursor linear RNAs. This method results in more efficient circularization than the conventional enzymatic method that does not use the splint DNAs, easily generating circRNAs that express relatively large proteins, including IgG heavy and light chains. Longer splint DNA (42 nucleotide) is more effective in circularization. Also, the use of splint DNAs with an adenine analog, 2,6-diaminopurine (DAP), increase the circularization efficiency presumably by strengthening the interaction between the splint DNAs and the precursor RNAs. The splint DNA ligation method requires 5 times more splint DNA than the precursor RNA to efficiently produce circRNAs, but our modified splint DNA ligation method can produce circRNAs using the amount of splint DNA which is equal to that of the precursor RNA. Our modified splint DNA ligation method will help develop novel therapeutic tools using circRNAs, to treat various diseases and to develop human and veterinary vaccines.

4.
Microorganisms ; 11(8)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37630470

RESUMEN

The toxic element arsenic (As) has become the major focus of global research owing to its harmful effects on human health, resulting in the establishment of several guidelines to prevent As contamination. The widespread industrial use of As has led to its accumulation in the environment, increasing the necessity to develop effective remediation technologies. Among various treatments, such as chemical, physical, and biological treatments, used to remediate As-contaminated environments, biological methods are the most economical and eco-friendly. Microbial oxidation of arsenite (As(III)) to arsenate (As(V)) is a primary detoxification strategy for As remediation as it reduces As toxicity and alters its mobility in the environment. Here, we evaluated the self-detoxification potential of microcosms isolated from Nakdong River water by investigating the autotrophic and heterotrophic oxidation of As(III) to As(V). Experimental data revealed that As(III) was oxidized to As(V) during the autotrophic and heterotrophic growth of river water microcosms. However, the rate of oxidation was significantly higher under heterotrophic conditions because of the higher cell growth and density in an organic-matter-rich environment compared to that under autotrophic conditions without the addition of external organic matter. At an As(III) concentration > 5 mM, autotrophic As(III) oxidation remained incomplete, even after an extended incubation time. This inhibition can be attributed to the toxic effect of the high contaminant concentration on bacterial growth and the acidification of the growth medium with the oxidation of As(III) to As(V). Furthermore, we isolated representative pure cultures from both heterotrophic- and autotrophic-enriched cultures. The new isolates revealed new members of As(III)-oxidizing bacteria in the diversified bacterial community. This study highlights the natural process of As attenuation within river systems, showing that microcosms in river water can detoxify As under both organic-matter-rich and -deficient conditions. Additionally, we isolated the bacterial strains HTAs10 and ATAs5 from the microcosm which can be further investigated for potential use in As remediation systems. Our findings provide insights into the microbial ecology of As(III) oxidation in river ecosystems and provide a foundation for further investigations into the application of these bacteria for bioremediation.

5.
Front Pharmacol ; 14: 1095955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37153778

RESUMEN

As our previous study revealed that N-benzyl-N-methyldecan-1-amine (BMDA), a new molecule originated from Allium sativum, exhibits anti-neoplastic activities, we herein explored other functions of the compound and its derivative [decyl-(4-methoxy-benzyl)-methyl-amine; DMMA] including anti-inflammatory and anti-oxidative activities. Pretreatment of THP-1 cells with BMDA or DMMA inhibited tumor necrosis factor (TNF)-α and interleukin (IL)-1ß production, and blocked c-jun terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), MAPKAP kinase (MK)2 and NF-κΒ inflammatory signaling during LPS stimulation. Rectal treatment with BMDA or DMMA reduced the severity of colitis in 2,4-dinitrobenzenesulfonic acid (DNBS)-treated rat. Consistently, administration of the compounds decreased myeloperoxidase (MPO) activity (representing neutrophil infiltration in colonic mucosa), production of inflammatory mediators such as cytokine-induced neutrophil chemoattractant (CINC)-3 and TNF-α, and activation of JNK and p38 MAPK in the colon tissues. In addition, oral administration of these compounds ameliorated collagen-induced rheumatoid arthritis (RA) in mice. The treatment diminished the levels of inflammatory cytokine transcripts, and protected connective tissues through the expression of anti-oxidation proteins such as nuclear factor erythroid-related factor (Nrf)2 and heme oxygenase (HO)1. Additionally, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels did not differ between the BMDA- or DMMA-treated and control animals, indicating that the compounds do not possess liver toxicity. Taken together, these findings propose that BMDA and DMMA could be used as new drugs for curing inflammatory bowel disease (IBD) and RA.

6.
J Microbiol ; 60(2): 192-206, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35102526

RESUMEN

Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.


Asunto(s)
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Bradyrhizobiaceae/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Regiones Árticas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Familia de Multigenes , ARN Mensajero/metabolismo
7.
Biomolecules ; 12(1)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053270

RESUMEN

Overexpression of cancer upregulated gene (CUG) 2 induces cancer stem cell-like phenotypes, such as enhanced epithelial-mesenchymal transition, sphere formation, and doxorubicin resistance. However, the precise mechanism of CUG2-induced oncogenesis remains unknown. We evaluated the effects of overexpression of CUG2 on microRNA levels using a microRNA microarray. Levels of miR-3656 were decreased when CUG2 was overexpressed; on the basis of this result, we further examined the target proteins of this microRNA. We focused on Jumonji C domain-containing protein 5 (JMJD5), as it has not been previously reported to be targeted by miR-3656. When CUG2 was overexpressed, JMJD5 expression was upregulated compared to that in control cells. A 3' untranslated region (UTR) assay revealed that an miR-3656 mimic targeted the JMJD5 3'UTR, but the miR-3656 mimic failed to target a mutant JMJD5 3'UTR, indicating that miR-3656 targets the JMJD5 transcript. Administration of the miR-3656 mimic decreased the protein levels of JMD5 according to Western blotting. Additionally, the miR-3656 mimic decreased CUG2-induced cell migration, evasion, and sphere formation and sensitized the cells to doxorubicin. Suppression of JMJD5, with its small interfering RNA, impeded CUG2-induced cancer stem cell-like phenotypes. Thus, overexpression of CUG2 decreases miR-3656 levels, leading to upregulation of JMJD5, eventually contributing to cancer stem cell-like phenotypes.


Asunto(s)
MicroARNs , Neoplasias , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Neoplasias/genética , Células Madre Neoplásicas/metabolismo , Fenotipo , Transducción de Señal
8.
J Fish Dis ; 45(2): 249-259, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34843109

RESUMEN

The control of bacterial pathogens, including Edwardsiella piscicida, in the aquaculture industry has high economic importance. This study aimed to identify a potential live vaccine candidate against E. piscicida infection to minimize the side effects and elicit immunity in the host. This study evaluated the virulence factors of E. piscicida CK108, with a special focus on the flagella. E. piscicida has two important homologous flagellin genes, namely flagellin-associated protein (fap) and flagellin domain-containing protein (fdp). CK226 (Δfap), CK247 (Δfdp) and CK248 (Δfap, fdp) mutant strains were constructed. Both CK226 and CK247 displayed decreased length and thickness of flagellar filaments, resulting in reduced bacterial swimming motility, while CK248 was non-motile as it lacked flagella. The loss of flagella and decreased motility was expected to decrease the pathogenicity of CK248. However, the median lethal dose (LD50 ) of CK248 against zebrafish was lower than those of the wild-type, CK226 and CK247 strains. The protective immunity and cytokine gene expression levels in the CK248-infected zebrafish were lower than those in the wild type-infected zebrafish. In conclusion, Fap and Fdp are essential for flagella formation and motility, and for stimulating fish immune response, which can be utilized as a potential adjuvants for E. piscicida vaccination.


Asunto(s)
Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Animales , Proteínas Bacterianas , Edwardsiella/genética , Infecciones por Enterobacteriaceae/prevención & control , Infecciones por Enterobacteriaceae/veterinaria , Enfermedades de los Peces/prevención & control , Flagelina/genética , Vacunas Atenuadas , Pez Cebra
9.
Cell Transplant ; 30: 9636897211023474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34176333

RESUMEN

Human adipose-derived mesenchymal stem cells (hAMSCs) are capable of immunomodulation and regeneration after neural injury. For these reasons, hAMSCs have been investigated as a promising stem cell candidate for stroke treatment. However, noninvasive experiments studying the effects of grafted stem cells in the host brain have not yet been reported. Cerebrospinal fluid (CSF), which can be collected without sacrificing the subject, is involved in physiological control of the brain and reflects the pathophysiology of various neurological disorders of the central nervous system (CNS). Following stem cell transplantation in a stroke model, quantitative analysis of CSF proteome changes can potentially reveal the therapeutic effect of stem cells on the host CNS. We examined hAMSC-secreted proteins obtained from serum-free culture medium by liquid chromatography-tandem mass spectrometry (LC-MS/MS), which identified several extracellular matrix proteins, supporting the well-known active paracrine function of hAMSCs. Subsequently, we performed label-free quantitative proteomic analysis on CSF samples from rat stroke models intravenously injected with hAMSC (experimental) or phosphate buffered saline (control). In total, 524 proteins were identified; among them, 125 and 91 proteins were increased and decreased with hAMSC treatment, respectively. Furthermore, gene set enrichment analysis revealed three proteins, 14-3-3 theta, MAG, and neurocan, that showed significant increases in the hAMSC-treated model; these proteins are core members of neurotrophin signaling, nerve growth factor (NGF) signaling, and glycosaminoglycan metabolism, respectively. Subsequent histological and neurologic function experiments validated proliferative neurogenesis in the hAMSC-treated stroke model. We conclude that (i) intravenous injection of hAMSCs can induce neurologic recovery in a rat stroke model and (ii) CSF may reflect the therapeutic effect of hAMSCs. Additionally, proteins as 14-3-3 theta, MAG, and neurocan could be considered as potential CSF biomarkers of neuroregeneration. These CSF proteome profiling results would be utilized as valuable resource in further stroke studies.


Asunto(s)
Trasplante de Células Madre Mesenquimatosas/métodos , Proteoma/metabolismo , Accidente Cerebrovascular/líquido cefalorraquídeo , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Ratas , Ratas Sprague-Dawley
10.
PLoS One ; 16(6): e0253760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34170922

RESUMEN

Oligonucleotide-based aptamers, which have a three-dimensional structure with a single-stranded fragment, feature various characteristics with respect to size, toxicity, and permeability. Accordingly, aptamers are advantageous in terms of diagnosis and treatment and are materials that can be produced through relatively simple experiments. Systematic evolution of ligands by exponential enrichment (SELEX) is one of the most widely used experimental methods for generating aptamers; however, it is highly expensive and time-consuming. To reduce the related costs, recent studies have used in silico approaches, such as aptamer-protein interaction (API) classifiers that use sequence patterns to determine the binding affinity between RNA aptamers and proteins. Some of these methods generate candidate RNA aptamer sequences that bind to a target protein, but they are limited to producing candidates of a specific size. In this study, we present a machine learning approach for selecting candidate sequences of various sizes that have a high binding affinity for a specific sequence of a target protein. We applied the Monte Carlo tree search (MCTS) algorithm for generating the candidate sequences using a score function based on an API classifier. The tree structure that we designed with MCTS enables nucleotide sequence sampling, and the obtained sequences are potential aptamer candidates. We performed a quality assessment using the scores of docking simulations. Our validation datasets revealed that our model showed similar or better docking scores in ZDOCK docking simulations than the known aptamers. We expect that our method, which is size-independent and easy to use, can provide insights into searching for an appropriate aptamer sequence for a target protein during the simulation step of SELEX.


Asunto(s)
Aptámeros de Nucleótidos , Simulación por Computador , Aprendizaje Automático , Modelos Químicos , Proteínas/química , Análisis de Secuencia de ARN , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Simulación del Acoplamiento Molecular , Método de Montecarlo
11.
Chemosphere ; 282: 131108, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34119723

RESUMEN

Owing to industrial evolution, a huge mass of toxic metals, including Co, Cu, Cr, Mn, Ni, Pb, and Zn, and metalloids, such as As and Sb, has inevitably been released into the natural environment and accumulated in soils or sediments. Along with modern industrialization, many mineral mines have been explored and exploited to provide materials for industries. Mining industries also generate a vast amount of waste, such as mine tailings, which contain a high concentration of toxic metals and metalloids. Due to the low economic status, a majority of mine tailings are simply disposed into the surrounding environments, without any treatment. The mobilization and migration of toxic metals and metalloids from soils, sediments, and mining wastes to water systems via natural weathering processes put both the ecological system and human health at high risk. Considering both economic and environmental aspects, bioleaching is a preferable option for removing the toxic metals and metalloids because of its low cost and environmental safety. This chapter reviews the recent approaches of bioleaching for removing toxic metals and metalloids from soils, sediments, and mining wastes. The comparison between bioleaching and chemical leaching of various waste sources is also discussed in terms of efficiency and environmental safety. Additionally, the advanced perspectives of bioleaching for environmental remediation with consideration of other influencing factors are reviewed for future studies and applications.


Asunto(s)
Restauración y Remediación Ambiental , Metaloides , Metales Pesados , Contaminantes del Suelo , Monitoreo del Ambiente , Humanos , Metaloides/análisis , Metales Pesados/análisis , Minería , Suelo , Contaminantes del Suelo/análisis
12.
Environ Pollut ; 280: 117001, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33799130

RESUMEN

Microbial selenite reduction has increasingly attracted attention from the scientific community because it allows the separation of toxic Se from waste sources with the concurrent recovery of Se nanoparticles, a multifunctional material in nanotechnology industries. In this study, four selenite-reducing bacteria, isolated from a river water sample, were found to reduce selenite by > 85% within 3 d of incubation, at ambient temperature. Among them, strain NDSe-7, belonging to genus Lysinibacillus, can reduce selenite and produce Se nanospheres in alkaline conditions, up to pH 10.0, and in salinity of up to 7.0%. This strain can reduce 80 mg/L of selenite to elemental Se within 24 h at pH 6.0-8.0, at a temperature of 30-40 °C, and salinity of 0.1-3.5%. Strain NDSe-7 exhibited potential for use in Se removal and recovery from industrial saline wastewater with high alkalinity. This study indicates that extremophilic microorganisms for environmental remediation can be found in a conventional environment.


Asunto(s)
Bacillaceae , Nanopartículas , Selenio , Bacterias , Oxidación-Reducción , Ríos , Ácido Selenioso
13.
Front Microbiol ; 11: 588487, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33304334

RESUMEN

The partner switching system (PSS) of the SigF regulatory pathway in Mycobacterium smegmatis has been previously demonstrated to include the anti-sigma factor RsbW (MSMEG_1803) and two anti-sigma factor antagonists RsfA and RsfB. In this study, we further characterized two additional RsbW homologs and revealed the distinct roles of three RsbW homologs [RsbW1 (MSMEG_1803), RsbW2 (MSMEG_6129), and RsbW3 (MSMEG_1787)] in the SigF PSS. RsbW1 and RsbW2 serve as the anti-sigma factor of SigF and the protein kinase phosphorylating RsfB, respectively, while RsbW3 functions as an anti-SigF antagonist through its protein interaction with RsbW1. Using relevant mutant strains, RsfB was demonstrated to be the major anti-SigF antagonist in M. smegmatis. The phosphorylation state of Ser-63 was shown to determine the functionality of RsfB as an anti-SigF antagonist. RsbW2 was demonstrated to be the only protein kinase that phosphorylates RsfB in M. smegmatis. Phosphorylation of Ser-63 inactivates RsfB to render it unable to interact with RsbW1. Our comparative RNA sequencing analysis of the wild-type strain of M. smegmatis and its isogenic Δaa 3 mutant strain lacking the aa 3 cytochrome c oxidase of the respiratory electron transport chain revealed that expression of the SigF regulon is strongly induced under respiration-inhibitory conditions in an RsfB-dependent way.

14.
Tissue Eng Regen Med ; 17(5): 695-704, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32901436

RESUMEN

BACKGROUND: Mannitol increases blood-brain barrier permeability and can improve the efficiency of systemically administered stem cells by facilitating stem cell entry from the periphery into the injured brain. The aim of this study was to elucidate the neuroprotective effects of a combination of mannitol pretreatment and stem cell transplantation on stroke-induced neural injury. METHODS: The experimental rats were randomly assigned to three groups 24 h after middle cerebral artery occlusion and reperfusion. One group received intravenous (IV) injections of phosphate-buffered saline (vehicle), another group received IV injections of human adipose-derived stem cells (hADSCs), and the last group received IV injections of hADSCs 10 min after IV mannitol injections. Neurobehavioral functions and infarct volume were compared. Immunohistochemistry (IHC) analyses were performed using antibodies against ionized calcium binding adapter-1 (IBA-1), rat endothelial antigen-1 (RECA-1), and bromodeoxyuridine/doublecortin (BrdU/DCX). RESULTS: PKH-26 labeling revealed no difference in the number of stem cells that had migrated into the injured brain, and hADSC transplantation did not improve the infarct volume. However, neurobehavioral functions improved in the mannitol group. IHC showed higher numbers of RECA-1-positive cells in the peri-infarcted brain and BrdU-/DCX-colocalized cells in the subventricular zone in the mannitol group. IBA-1-positive cell number decreased in the hADSC-only and mannitol-pretreatment groups compared with the vehicle group even though there was no difference between the former two groups. CONCLUSION: Combinatorial treatment with mannitol and hADSC transplantation may have better therapeutic potential than hADSC monotherapy for ischemic stroke.


Asunto(s)
Manitol , Accidente Cerebrovascular , Animales , Movimiento Celular , Modelos Animales de Enfermedad , Proteína Doblecortina , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Ratas , Trasplante de Células Madre , Accidente Cerebrovascular/tratamiento farmacológico
15.
Materials (Basel) ; 13(12)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604909

RESUMEN

Excellent mechanical properties of carbon-fiber-reinforced plastic material (CFRP) demonstrates many possibilities in industries using lightweight materials, but unlike isotropic materials, such as iron, aluminum, and magnesium, they show direction-sensitive properties, which makes it difficult to apply for them. The sensitivity of a modal damping coefficient of a CFRP material over the direction of carbon fiber was examined on spectral input patterns in recent research, but the effect of temperature was not considered up to now. To overcome this, uniaxial vibration tests were conducted using five simple specimens with different direction of carbon fiber in a CFRP specimen, the frequency response functions were experimentally determined and the modal damping coefficients were calculated. It was revealed that the resonance point and the modal damping of the specimen changed according to the change in temperature condition. Based on the experimental results, it was demonstrated that the theoretical frequency response function of the carbon composite material is a function of temperature, and it was confirmed that the nonlinear characteristic of the modal damping was the smallest under the 0 degree of direction of carbon fiber.

16.
Biomolecules ; 10(6)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580482

RESUMEN

Manganese-oxidizing bacteria have been widely investigated for bioremediation of Mn-contaminated water sources and for production of biogenic Mn oxides that have extensive applications in environmental remediation. In this study, a total of 5 Mn-resistant bacteria were isolated from river water and investigated for Mn removal. Among them, Ochrobactrum sp. NDMn-6 exhibited the highest Mn removal efficiency (99.1%). The final precipitates produced by this strain were defined as a mixture of Mn2O3, MnO2, and MnCO3. Optimal Mn-removal performance by strain NDMn-6 was obtained at a temperature range of 25-30 °C and the salinity of 0.1-0.5%. More interestingly, strain NDMn-6 could be resistant to salinities of up to 5%, revealing that this strain could be possibly applied for Mn remediation of high salinity regions or industrial saline wastewaters. This study also revealed the potential of self-detoxification mechanisms, wherein river water contaminated with Mn could be cleaned by indigenous bacteria through an appropriate biostimulation scheme.


Asunto(s)
Compuestos de Manganeso/aislamiento & purificación , Ochrobactrum/aislamiento & purificación , Ríos/química , Contaminantes Químicos del Agua/aislamiento & purificación , Compuestos de Manganeso/química , Compuestos de Manganeso/metabolismo , Ochrobactrum/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo
17.
Microbiol Resour Announc ; 9(17)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32327515

RESUMEN

Edwardsiella piscicida CK41 is a fish-pathogenic Gram-negative bacterium isolated from diseased flounder in the Republic of Korea. Here, we report the genome sequence of E. piscicida CK41, comprising one chromosome of 3.76 Mbp and one plasmid of 72.7 kbp. A total of 3,406 protein-coding genes, 98 tRNAs, and 25 rRNAs are predicted to be present in the genome.

18.
J Korean Neurosurg Soc ; 63(2): 163-170, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32120456

RESUMEN

OBJECTIVE: Milk fat globule-epidermal growth factor VIII (MFG-E8) may play a key role in inflammatory responses and has the potential to function as a neuroprotective agent for ameliorating brain injury in cerebral infarction. This study aimed to determine the role of MFG-E8 in brain injury in the subacute phase of cerebral ischemia in a rat model. METHODS: Focal cerebral ischemia was induced in rats by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, rats were randomly assigned to two groups and treated with either recombinant human MFG-E8 or saline. Functional outcomes were assessed using the modified Neurological Severity Score (mNSS), and infarct volumes were evaluated using histology. Anti-inflammation, angiogenesis, and neurogenesis were assessed using immunohistochemistry with antibodies against ionized calcium-binding adapter molecule 1 (Iba-1), rat endothelial cell antigen-1 (RECA-1), and bromodeoxyuridine (BrdU)/doublecortin (DCX), respectively. RESULTS: Our results showed that intravenous MFG-E8 treatment did not reduce the infarct volume; however, the mNSS test revealed that neurobehavioral deficits were significantly improved in the MFG-E8-treated group than in the vehicle group. Immunofluorescence staining revealed a significantly lower number of Iba-1-positive cells and higher number of RECA-1 in the periinfarcted brain region, and significantly higher numbers of BrdU- and DCX-positive cells in the subventricular zone in the MFG-E8-treated group than in the vehicle group. CONCLUSION: Our findings suggest that MFG-E8 improves neurological function by suppressing inflammation and enhancing angiogenesis and neuronal proliferation in the subacute phase of cerebral infarction.

19.
J Biol Chem ; 294(28): 11023-11034, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31160336

RESUMEN

The mycobacterial SenX3-RegX3 two-component system consists of the SenX3 sensor histidine kinase and its cognate RegX3 response regulator. This system is a phosphorelay-based regulatory system involved in sensing environmental Pi levels and induction of genes required for Pi acquisition under Pi-limiting conditions. Here we demonstrate that overexpression of the kinase domain of Mycobacterium tuberculosis PknB (PknB-KDMtb) inhibits the transcriptional activity of RegX3 of both M. tuberculosis and Mycobacterium smegmatis (RegX3Mtb and RegX3Ms, respectively). Mass spectrometry results, along with those of in vitro phosphorylation and complementation analyses, revealed that PknB kinase activity inhibits the transcriptional activity of RegX3Mtb through phosphorylation events at Thr-100, Thr-191, and Thr-217. Electrophoretic mobility shift assays disclosed that phosphorylation of Thr-191 and Thr-217 abolishes the DNA-binding ability of RegX3Mtb and that Thr-100 phosphorylation likely prevents RegX3Mtb from being activated through conformational changes induced by SenX3-mediated phosphorylation. We propose that the convergence of the PknB and SenX3-RegX3 signaling pathways might enable mycobacteria to integrate environmental Pi signals with the cellular replication state to adjust gene expression in response to Pi availability.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfotransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Fosforilación , Fosfotransferasas/genética , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/fisiología , Rifabutina/metabolismo , Transducción de Señal/genética
20.
Materials (Basel) ; 12(10)2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130636

RESUMEN

Magnesium is an essential element involved in various biochemical processes in the human body. In addition to oral supplementation, topical magnesium application is another conventional form of magnesium delivery for the treatment of skin diseases and muscle inflammation. Cucumber extract is a well-known superfood for human skin. It has been widely used in various skincare product lines because of its known benefits to the skin. The benefit of cucumber extract to the human skin would be significantly enhanced if the cucumber extract was fermented to convert the reducing sugars to beneficial organic acids. In this study, we developed a protocol for lactic acid fermentation of cucumber extract using hydromagnesite as a neutralizing agent. Various lactic acid bacteria were screened for fermentation of cucumber extract. The best fermenting performance was observed with Lactobacillus paracasei, which could convert approximately 13 g/L of reducing sugars (glucose and fructose) to lactic acid and a minor amount of acetic acid within 2 days of incubation. The final fermented cucumber extract contains magnesium in the form of salts of organic acids, which have high absorption ability and bioavailability. The product is a potent ingredient for producing dermal magnesium products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...