Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Clin Transl Med ; 12(8): e997, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35908277

RESUMEN

BACKGROUND: The biological function of mesenchymal stem-like cells (MSLCs), a type of stromal cells, in the regulation of the tumour microenvironment is unclear. Here, we investigated the molecular mechanisms underlying extracellular matrix (ECM) remodelling and crosstalk between MSLCs and glioblastomas (GBMs) in tumour progression. METHODS: In vitro and in vivo co-culture systems were used to analyze ECM remodelling and GBM infiltration. In addition, clinical databases, samples from patients with GBM and a xenografted mouse model of GBM were used. RESULTS: Previous studies have shown that the survival of patients with GBM from whom MSLCs could be isolated is substantially shorter than that of patients from whom MSLCs could not be isolated. Therefore, we determined the correlation between changes in ECM-related gene expression in MSLC-isolatable patients with that in MSLC non-isolatable patients using gene set enrichment analysis (GSEA). We found that lysyl oxidase (LOX) and COL1A1 expressions increased in MSLCs via GBM-derived clusters of differentiation 40 ligand (CD40L). Mechanistically, MSLCs are reprogrammed by the CD40L/CD40/NFκB2 signalling axis to build a tumour infiltrative microenvironment involving collagen crosslinking. Importantly, blocking of CD40L by a neutralizing antibody-suppressed LOX expression and ECM remodelling, decreasing GBM infiltration in mouse xenograft models. Clinically, high expression of CD40L, clusters of differentiation 40 (CD40) and LOX correlated with poor survival in patients with glioma. This indicated that GBM-educated MSLCs promote GBM infiltration via ECM remodelling in the tumour microenvironment. CONCLUSION: Our findings provide mechanistic insights into the pro-infiltrative tumour microenvironment produced by GBM-educated MSLCs and highlight a potential therapeutic target that can be used for suppressing GBM infiltration.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Ligando de CD40/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Microambiente Tumoral
4.
Cell Death Discov ; 8(1): 271, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35614051

RESUMEN

Breast cancer is the most common type of cancer in women, and approximately 70% of all breast cancer patients use endocrine therapy, such as estrogen receptor modulators and aromatase inhibitors. In particular, triple-negative breast cancer (TNBC) remains a major threat due to the lack of targeted treatment options and poor clinical outcomes. Here, we found that GPR110 was highly expressed in TNBC and GPR110 plays a key role in TNBC progression by engaging the RAS signaling pathway (via Gαs activation). High expression of GPR110 promoted EMT and CSC phenotypes in breast cancer. Consequently, our study highlights the critical role of GPR110 as a therapeutic target and inhibition of GPR110 could provide a therapeutic strategy for the treatment of TNBC patients.

5.
Cell Death Dis ; 13(4): 417, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35487888

RESUMEN

Colorectal cancer (CRC) has a 5-year survival rate of <10%, as it can metastasize to the lungs and liver. Anticancer drugs and targeted therapies used to treat metastatic colorectal cancer have insufficient therapeutic efficacy and are associated with complications. Therefore, research to develop new targeted therapeutics is necessary. Here, we present a novel discovery that intracellular adhesion molecule-1 (ICAM-1) is a potential therapeutic target to enhance therapeutic effectiveness for CRC. ICAM-1 is an important regulator of cell-cell interactions and recent studies have shown that it promotes malignancy in several carcinomas. However, little is known about its effect on CRC. Therefore, we conducted a study to define the mechanism by which ICAM-1 acts. ICAM-1 is phosphorylated by tyrosine-protein kinase Met (c-MET), and phosphorylated ICAM-1 can interact with SRC to increase SRC activity. Consequently, ICAM-1 may further accelerate SRC signaling, promoting the malignant potential of cancer. In addition, treatment with antibodies targeting ICAM-1 showed excellent therapeutic effects in reducing metastasis and angiogenesis. These findings suggest for the first time that ICAM-1 is an important adapter protein capable of mediating the c-MET-SRC signaling axis. Therefore, ICAM-1 can be used as a novel therapeutic target and a metastatic marker for CRC.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Transducción de Señal
6.
Adv Sci (Weinh) ; 9(2): e2102768, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813169

RESUMEN

Despite aggressive clinical treatment, recurrence of glioblastoma multiforme (GBM) is unavoidable, and the clinical outcome is still poor. A convincing explanation is the phenotypic transition of GBM cells upon aggressive treatment such as radiotherapy. However, the microenvironmental factors contributing to GBM recurrence after treatment remain unexplored. Here, it is shown that radiation-treated GBM cells produce soluble intercellular adhesion molecule-1 (sICAM-1) which stimulates the infiltration of macrophages, consequently enriching the tumor microenvironment with inflammatory macrophages. Acting as a paracrine factor, tumor-derived sICAM-1 induces macrophages to secrete wingless-type MMTV integration site family, member 3A (WNT3A), which promotes a mesenchymal shift of GBM cells. In addition, blockade of either sICAM-1 or WNT3A diminishes the harmful effect of radiation on tumor progression. Collectively, the findings indicate that cellular crosstalk between GBM and macrophage through sICAM-1-WNT3A oncogenic route is involved in the mesenchymal shift of GBM cells after radiation, and suggest that radiotherapy combined with sICAM-1 targeted inhibition would improve the clinical outcome of GBM patients.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Macrófagos/metabolismo , Mesodermo/metabolismo , Animales , Neoplasias Encefálicas/genética , Modelos Animales de Enfermedad , Glioblastoma/genética , Humanos , Masculino , Ratones , Ratones Desnudos
7.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34681583

RESUMEN

Radiation therapy is a current standard-of-care treatment and is used widely for GBM patients. However, radiation therapy still remains a significant barrier to getting a successful outcome due to the therapeutic resistance and tumor recurrence. Understanding the underlying mechanisms of this resistance and recurrence would provide an efficient approach for improving the therapy for GBM treatment. Here, we identified a regulatory mechanism of CD44 which induces infiltration and mesenchymal shift of GBM. Ionizing radiation (IR)-induced K-RAS/ERK signaling activation elevates CD44 expression through downregulation of miR-202 and miR-185 expression. High expression of CD44 promotes SRC activation to induce cancer stemness and EMT features of GBM cells. In this study, we demonstrate that the K-RAS/ERK/CD44 axis is a key mechanism in regulating mesenchymal shift of GBM cells after irradiation. These findings suggest that blocking the K-RAS activation or CD44 expression could provide an efficient way for GBM treatment.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Receptores de Hialuranos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Radiación Ionizante , Transducción de Señal/efectos de la radiación , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Movimiento Celular/efectos de la radiación , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Humanos , Receptores de Hialuranos/antagonistas & inhibidores , Receptores de Hialuranos/genética , Estimación de Kaplan-Meier , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
10.
Cell Death Differ ; 27(11): 3004-3020, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32415280

RESUMEN

Conventional screening methods for deubiquitinating enzymes (DUBs) have important limitations. A loss-of-function study based on the knockout of DUB genes in mammalian cells can provide an excellent model for exploring DUB function. Here, we used CRISPR-Cas9 to perform genome-scale knockout of the entire set of genes encoding ubiquitin-specific proteases (USPs), a DUB subfamily, and then systematically screened for DUBs that stabilize the Cdc25A oncoprotein. USP3 was identified as a deubiquitinase of Cdc25A. USP3 depletion reduces the Cdc25A protein level, resulting in a significant delay in cell-cycle progression, and reduces the growth of cervical tumor xenografts in nude mice. Clinically, USP3 expression is positively correlated with Cdc25A protein expression and the poorest survival in breast cancer. We envision that our DUB knockout library kit will facilitate genome-scale screening of functional DUBs for target proteins of interest in a wide range of biomedical fields.


Asunto(s)
Ciclo Celular/genética , Proteasas Ubiquitina-Específicas/genética , Ubiquitinación , Neoplasias del Cuello Uterino/metabolismo , Fosfatasas cdc25/genética , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Análisis de Supervivencia , Proteasas Ubiquitina-Específicas/metabolismo , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Fosfatasas cdc25/metabolismo
11.
Cancer Res ; 80(11): 2217-2229, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32193292

RESUMEN

Stemness and epithelial-mesenchymal transition (EMT) are two fundamental characteristics of metastasis that are controlled by diverse regulatory factors, including transcription factors. Compared with other subtypes of breast cancer, basal-type or triple-negative breast cancer (TNBC) has high frequencies of tumor relapse. However, the role of alpha-globin transcription factor CP2 (TFCP2) has not been reported as an oncogenic driver in those breast cancers. Here, we show that TFCP2 is a potent factor essential for EMT, stemness, and metastasis in breast cancer. TFCP2 directly bound promoters of EGF and TGFα to regulate their expression and stimulate autocrine signaling via EGFR. These findings indicate that TFCP2 is a new antimetastatic target and reveal a novel regulatory mechanism in which a positive feedback loop comprising EGF/TGFα and AKT can control malignant breast cancer progression. SIGNIFICANCE: TFCP2 is a new antimetastatic target that controls TNBC progression via a positive feedback loop between EGF/TGFα and the AKT signaling axis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas de Unión al ADN/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador alfa/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Receptores ErbB/metabolismo , Retroalimentación Fisiológica , Femenino , Técnicas de Silenciamiento del Gen , Xenoinjertos , Humanos , Células MCF-7 , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Células Madre Neoplásicas , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba
12.
Cell Commun Signal ; 17(1): 12, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760304

RESUMEN

BACKGROUND: The existence of differentiated thyroid cells is critical to respond radioactive iodide treatment strategy in thyroid cancer, and loss of the differentiated phenotype is a trademark of iodide-refractive thyroid disease. While high-dose therapy has been beneficial to several cancer patients, many studies have indicated this clinical benefit was limited to patients having BRAF mutation. BRAF-targeted paired box gene-8 (PAX8), a thyroid-specific transcription factor, generally dysregulated in BRAF-mutated thyroid cancer. METHODS: In this study, thyroid iodine-metabolizing gene levels were detected in BRAF-transformed thyroid cells after low and high dose of ionizing radiation. Also, an mRNA-targeted approach was used to figure out the underlying mechanism of low (0.01Gyx10 or 0.1Gy) and high (2Gy) radiation function on thyroid cancer cells after BRAFV600E mutation. RESULTS: Low dose radiation (LDR)-induced PAX8 upregulation restores not only BRAF-suppressive sodium/iodide symporter (NIS) expression, one of the major protein necessary for iodine uptake in healthy thyroid, on plasma membrane but also regulate other thyroid metabolizing genes levels. Importantly, LDR-induced PAX8 results in decreased cellular transformation in BRAF-mutated thyroid cells. CONCLUSION: The present findings provide evidence that LDR-induced PAX8 acts as an important regulator for suppression of thyroid carcinogenesis through novel STAT3/miR-330-5p pathway in thyroid cancers.


Asunto(s)
Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/efectos de la radiación , Proteínas Proto-Oncogénicas B-raf/metabolismo , Glándula Tiroides/patología , Glándula Tiroides/efectos de la radiación , Animales , Carcinogénesis/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Hipotiroidismo/patología , Yodo/metabolismo , Ratones Mutantes , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Mutación/genética , Factor de Transcripción PAX8/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/radioterapia , Regulación hacia Arriba/genética , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Oncotarget ; 8(47): 83100-83113, 2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-29137327

RESUMEN

Advanced or progressive cancers share common traits such as altered transcriptional modulation, genetic modification, and abnormal post-translational regulation. These processes influence protein stability and cellular activity. Intercellular adhesion molecule-1 (ICAM-1) is involved in the malignant progression of various human cancers, including breast, liver, renal, and pancreatic cancers, but protein stability has not been deal with in metastatic breast cancer. Additionally, the relevance of the stability maintenance of ICAM-1 protein remains obscure. Here, we identified a novel interaction of E3 ligase FBXO4 that is specifically presented to ICAM-1. To understand how FBXO4 modulates ICAM-1 stability, we investigated ICAM-1-overexpressing or knockdown metastatic/non-metastatic breast cancers. ICAM-1 was found to influence tumor progression and metastasis, whereas FBXO4 regulated aggressive tumorigenic conditions. These results demonstrate that FBXO4 is a major regulator of ICAM-1 stability and that alterations in the stability of ICAM-1 can influence therapeutic outcome in metastatic cancer.

14.
Diabetes Metab Res Rev ; 27(6): 557-63, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21538775

RESUMEN

BACKGROUND: Glucokinase, the enzyme that catalyses the conversion of glucose to G-6-P, plays a key role in glucose metabolism. AGEs are implicated in diabetic complications. A previous study reported that AGEs decreased ß-cell function through inhibition of cytochrome c oxidase and adenosine triphosphate synthesis. This study investigated the effects of AGEs on glucokinase and islet function. METHODS: Six-month-old male C57BL6 mice were divided into bovine serum albumin (BSA) and AGE-BSA groups. BSA (200 µg/g) and AGE-BSA (60 U/g) were administered intraperitoneally twice daily. After 2 weeks, serum AGE levels were measured, oral glucose tolerance test was performed, and insulin levels during the oral glucose tolerance test were determined. Glucokinase protein expression level and activity were measured in pancreatic islets. RESULTS: We observed that the normal mice (C57/BL6) treated for 2 weeks with AGE-BSA showed impaired glucose tolerance and decrease in acute insulin release. Glucokinase activity in islets from the AGE-BSA-treated mice was significantly inhibited and accompanied by blunted response of islets to high glucose stimulation. Moreover, in vitro experiments showed that glucokinase protein expression was decreased, its activity was inhibited, and islet function was decreased. GKA partially restored glucokinase activity and islet function caused by AGEs. CONCLUSIONS: We concluded that AGEs inhibited glucokinase activity, leading to islet dysfunction in mouse pancreatic islets.


Asunto(s)
Glucoquinasa/metabolismo , Productos Finales de Glicación Avanzada/farmacología , Islotes Pancreáticos/enzimología , Sulfonas/farmacología , Tiazoles/farmacología , Animales , Regulación hacia Abajo , Glucoquinasa/efectos de los fármacos , Intolerancia a la Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Insulina/metabolismo , Secreción de Insulina , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Albúmina Sérica Bovina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...