Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 152: 106422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38310813

RESUMEN

Calcium silicate can be used as an excellent material for biodegradable bone scaffolds because it can provide bioactive ions to promote bone regeneration. However, the brittleness and rapid degradation of calcium silicate scaffolds have significantly limited their clinical application. In this work, the calcium silicate scaffolds printed by DLP technology were immersed in a gelatin solution under high vacuum condition to obtain calcium silicate/gelatin composite scaffolds with good mechanical and biological properties. Then, genipin was used as a cross-linker for gelatin to control the degradation properties of the composite scaffolds. The initial compressive strength and toughness of the composite scaffolds were 5.0 times and one order of magnitude higher than those of the pure calcium silicate scaffolds, respectively. The gelatin on the surface of the scaffolds could effectively act as a protective layer to regulate the degradation behaviors of the calcium silicate substrate through controlling the crosslinking degree of the gelatin. After degrading for 14 days, the composite scaffolds at 1.0 % genipin concentration exhibited the highest compressive strength of 8.6 ± 0.8 MPa, much higher than that of the pure ceramic scaffold (1.5 ± 0.3 MPa). It can be found that the toughness of the composite scaffolds were almost over 13.2 times higher than that of the pure ceramic scaffold during degradation, despite the higher toughness loss for the former. Furthermore, the composite scaffolds showed enhanced cell biocompatibility and viability. These results demonstrate that the calcium silicate/gelatin composite scaffolds can be a promising candidate in bone tissue regeneration.


Asunto(s)
Regeneración Ósea , Compuestos de Calcio , Gelatina , Iridoides , Silicatos , Huesos
2.
J Craniofac Surg ; 34(8): 2460-2463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37264507

RESUMEN

Given the insufficient height of single-barrel fibula and inadequate bone volume of double-barrel vascularized fibula in mandibular reconstruction, it is a better choice to combine the upper full-thickness vascularized fibula with the lower half-thickness nonvascularized fibula. However, the nonvascularized fibula may fail due to complications, affecting the facial shape and occlusal function. Polyetheretherketone is a thermoplastic polymer used for bone defect reconstruction due to its good mechanical properties and biocompatibility. This case report mainly presents a secondary salvage reconstruction of the mandible by using customed 3-dimensional-printing polyetheretherketone, which restored the continuity and symmetry of the mandible, improved the patient's facial shape, and restored functional occlusion through dental implants. After a 28-month follow-up, no complications occurred, and the patient was satisfied with the final restoration.


Asunto(s)
Implantes Dentales , Neoplasias Mandibulares , Reconstrucción Mandibular , Humanos , Neoplasias Mandibulares/cirugía , Mandíbula/cirugía , Impresión Tridimensional , Peroné/cirugía , Trasplante Óseo
3.
Comput Methods Biomech Biomed Engin ; 26(11): 1308-1319, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36036151

RESUMEN

Gradient porous structure made by additive manufacturing (AM) technology is potential to improve the long-term stability of orthopaedic implants through bone ingrowth while maintaining mechanical safety. In this study, a parametrical optimization methodology for the customized gradient porous implants was developed based on a stress-dependent design algorithm. Clinical requirements and manufacturing capabilities of AM were considered in the design procedure. A femoral stem with a minimum bone loss proportion of 2.4% by optimizing the control parameters. This study provided a feasible and flexible design approach for the customized implant with gradient porous structure or material components.


Asunto(s)
Porosidad , Prótesis e Implantes , Análisis de Elementos Finitos , Módulo de Elasticidad , Fémur
4.
Polymers (Basel) ; 14(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36297871

RESUMEN

The incorporation of bioactive ceramic into polyether ether ketone (PEEK) was expected to improve the bioinertia and hydrophobicity of pure PEEK, further facilitating osseointegration and bone ingrowth. However, the addition of bioceramic also changes the anisotropy of mechanical properties and failure mechanism of composite. Therefore, three-dimensional printed (3D-printed) PEEK/hydroxyapatite (HA) composite filaments with differing proportions (HA content: 10-30 wt%) were prepared using physical mixture and melting extrusion processes. The tensile elastic modulus and tensile strength of composite filaments were tested experimentally. These microscopic models, with multiple diameter variations and differing dispersity of HA particles, were built to estimate mechanical properties using finite element analysis. Based on a generalized version of Hooke's Law, the influence of diameter variation and particle clustering on the elastic modulus was evaluated. The mathematical relationship between the elastic modulus and volume fraction of the bioceramic was established using the Halpin-Tsai model. The results showed that with an increase in HA content from 10 wt% to 30 wt%, the elastic modulus of the composite increased from 2.36 GPa to 2.79 GPa, tensile strength decreased from 95 MPa to 74 MPa, and fracture elongation decreased from 63% to 23%, presenting brittle fracture failure. When the dispersion of particles was uniform, the elastic modulus was less affected by diameter variation, but the modulus anisotropic coefficient was greatly affected by the composition ratio, particle diameter, and dispersity. Hence, 3D-printed PEEK/HA composite filaments can meet the strength requirements of human bone, and understanding the influence of mechanical anisotropy plays a very important role in the design, manufacture, and clinical application of medical implants.

5.
Biomater Transl ; 3(2): 116-133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36105567

RESUMEN

Polyether-ether-ketone (PEEK) is believed to be the next-generation biomedical material for orthopaedic implants that may replace metal materials because of its good biocompatibility, appropriate mechanical properties and radiolucency. Currently, some PEEK implants have been used successfully for many years. However, there is no customised PEEK orthopaedic implant made by additive manufacturing licensed for the market, although clinical trials have been increasingly reported. In this review article, design criteria, including geometric matching, functional restoration, strength safety, early fixation, long-term stability and manufacturing capability, are summarised, focusing on the clinical requirements. An integrated framework of design and manufacturing processes to create customised PEEK implants is presented, and several typical clinical applications such as cranioplasty patches, rib prostheses, mandibular prostheses, scapula prostheses and femoral prostheses are described. The main technical challenge faced by PEEK orthopaedic implants lies in the poor bonding with bone and soft tissue due to its biological inertness, which may be solved by adding bioactive fillers and manufacturing porous architecture. The lack of technical standards is also one of the major factors preventing additive-manufactured customised PEEK orthopaedic implants from clinical translation, and it is good to see that the abundance of standards in the field of additive-manufactured medical devices is helping them enter the clinical market.

6.
Comput Methods Programs Biomed ; 225: 107105, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36108412

RESUMEN

BACKGROUND AND OBJECTIVE: Rigid reconstruction of chest wall defect seriously affects the postoperative respiratory owing to neglecting the functional role of natural costal cartilage. In the study, a 3D printing PEEK flexible implant was developed to restore the deformation capability during breathing motion. MATERIALS AND METHODS: Bionic spring structures in different region of implant were designed by taking into consideration of the anatomical morphology and materials properties of costal cartilage. The biomechanical properties of the rigid and flexible implants under the chest compression were compared through the finite element analysis. Two kinds of chest wall implant samples were fabricated with fused deposition modeling (FDM) technology to evaluate experimentally the mechanical behaviors. Finally, the restoration ability of respiratory function from the flexible implant was investigated in vivo. RESULTS: The flexible implant exhibited the similar stiffness to the natural thorax and satisfied the strength demand in the chest compression. The maximal impact force of flexible implant reached to 536 N. The fatigue failure of complete flexible implant was revealed from the initiation and propagation of interlaminar crack to the fracture in a zigzag manner. Animal experiments validated that the parameters characterizing respiratory could be recovered to the preoperative and normal state. CONCLUSIONS: In the study, the flexible implant provided these advantages for perfect replication of thoracic shape, reliable safety, and great deformation capability to response respiratory movement, which given a superior treatment for chest wall reconstruction.


Asunto(s)
Pared Torácica , Benzofenonas , Polímeros , Impresión Tridimensional , Pared Torácica/cirugía
7.
J Funct Biomater ; 13(3)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36135562

RESUMEN

Although the initial mechanical properties of additive-manufactured (AM) metal scaffolds have been thoroughly studied and have become a cornerstone in the design of porous orthopaedic implants, the potential promotion of the mechanical properties of the scaffolds by bone ingrowth has barely been studied. In this study, the promotion of bone ingrowth on the mechanical properties of AM titanium alloy scaffolds was investigated through in vivo experiments and numerical simulation. On one hand, the osseointegration characteristics of scaffolds with architectures of body-centred cubic (BCC) and diamond were compared through animal experiments in which the mechanical properties of both scaffolds were not enhanced by the four-week implantation. On the other hand, the influences of the type and morphology of bone tissue in the BCC scaffolds on its mechanical properties were investigated by the finite element model of osseointegrated scaffolds, which was calibrated by the results of biomechanical testing. Significant promotion of the mechanical properties of AM metal scaffolds was only found when cortical bone filled the pores in the scaffolds. This paper provides a numerical prediction method to investigate the effect of bone ingrowth on the mechanical properties of AM porous implants, which might be valuable for the design of porous implants.

8.
Polymers (Basel) ; 14(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36015679

RESUMEN

BACKGROUND: This study aimed to investigate the biomechanical behaviors of polyether ether ketone (PEEK) and traditional materials (titanium and fiber) when used to restore tooth defects in the form of prefabricated post or customized post via computational modelling. METHODS: First, the prototype of natural tooth, and the prototypes of prefabricated post and customized post were established, respectively, whilst the residual root was restored with dentin ferrule using reverse engineering methods. Then, the stress and strain of CFR-PEEK (PEEK reinforced by 30% carbon fiber) and pure PEEK (PEEK without any reprocessing) post were compared with those made in traditional materials using the three-dimensional finite element method. RESULTS: From the stress point of view, compared with metal and fiber posts, CFR-PEEK and pure PEEK prefabricated post both demonstrated reduced post-core interface stress, post stress, post-root cement stress and root cement stress; moreover, CFR-PEEK and pure PEEK customized post demonstrated reduced post stress, post-root cement stress and root cement stress, while the strain of CFR-PEEK post was the closest to that of dentin. CONCLUSIONS: Compared with the traditional posts, both the CFR-PEEK and pure PEEK posts could reduce the risk of debonding and vertical root fracture, whether they were used as prefabricated posts or customized posts, but the biomechanical behavior of carbon fiber-reinforced CFR-PEEK restorations was the closest to dentin, no matter if they were used as prefabricated post or customized post. Therefore, the CFR-PEEK post could be more suitable to restore massive tooth defects. Pure PEEK needs filler reinforcement to be used for post-retained restoration.

9.
Mater Sci Eng C Mater Biol Appl ; 128: 112333, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474884

RESUMEN

Polyetheretherketone (PEEK) was widely applied into fabricating of orthopaedic implants, benefitting its excellent biocompatibility and similar mechanical properties to native bones. However, the inertness of PEEK hinders its integration with the surrounding bone tissue. Here PEEK scaffolds with a series of hydroxyapatite (HA) contents in gradient were manufactured via fused filament fabrication (FFF) 3D printing techniques. The influence of the pore size, HA content and printing direction on the mechanical properties of the PEEK/HA scaffolds was systematically evaluated. By adjusting the pore size and HA contents, the elastic modulus of the PEEK/HA scaffolds can be widely tuned in the range of 624.7-50.6 MPa, similar to the variation range of natural cancellous bone. Meanwhile, the scaffolds exhibited higher Young's modulus and lower compressive strength along Z printing direction. The mapping relationship among geometric parameters, HA content, printing direction and mechanical properties was established, which gave more accurate predictions and controllability of the modulus and strength of scaffolds. The PEEK/HA scaffolds with the micro-structured surface could promote cell attachment and mineralization in vitro. Therefore, the FFF-printed PEEK/HA composites scaffolds can be a good candidate for bone grafting and tissue engineering.


Asunto(s)
Durapatita , Cetonas , Benzofenonas , Polietilenglicoles , Polímeros , Porosidad , Impresión Tridimensional , Andamios del Tejido
10.
Polymers (Basel) ; 13(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34372150

RESUMEN

Polyetheretherketone (PEEK) was widely used in the fabrication of bone substitutes for its excellent chemical resistance, thermal stability and mechanical properties that were similar to those of natural bone tissue. However, the biological inertness restricted the osseointegration with surrounding bone tissue. In this study, calcium silicate (CS) was introduced to improve the bioactivity of PEEK. The PEEK/CS composites scaffolds with CS contents in gradient were fabricated with different raster angles via fused filament fabrication (FFF). With the CS content ranging from 0 to 40% wt, the crystallinity degree (from 16% to 30%) and surface roughness (from 0.13 ± 0.04 to 0.48 ± 0.062 µm) of PEEK/CS scaffolds was enhanced. Mechanical testing showed that the compressive modulus of the PEEK/CS scaffolds could be tuned in the range of 23.3-541.5 MPa. Under the same printing raster angle, the compressive strength reached the maximum with CS content of 20% wt. The deformation process and failure modes could be adjusted by changing the raster angle. Furthermore, the mapping relationships among the modulus, strength, raster angle and CS content were derived, providing guidance for the selection of printing parameters and the control of mechanical properties.

11.
Mater Sci Eng C Mater Biol Appl ; 127: 112250, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34225889

RESUMEN

Customized spinal implants fabricated by additive manufacturing have been increasingly used clinically to restore the physiological functions. However, the mechanisms and methods about the design for the spinal implants are not clear, especially for the reconstruction of multi-segment vertebral. This study aims to develop a novel multi-objective optimization methodology based on various normal spinal activities, to design the artificial vertebral implant (AVI) with lightweight, high-strength and high-stability. The biomechanical performance for two types of AVI was analyzed and compared under different loading conditions by finite element method. These implants were manufactured via selective laser melting technology and evaluated via compressive testing. Results showed the maximum Mises stress of the optimized implant under various load cases were about 41.5% of that of the trussed implant, and below fatigue strength of 3D printed titanium materials. The optimized implant was about 2 times to trussed implant in term of the maximum compression load and compression stiffness to per unit mass, which indicated the optimized implant can meet the safety requirement. Finally, the optimized implant has been used in clinical practice and good short-term clinical outcomes were achieved. Therefore, the novel developed method provides a favorable guarantee for the design of 3D printed multi-segment artificial vertebral implants.


Asunto(s)
Prótesis e Implantes , Titanio , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Rayos Láser , Impresión Tridimensional , Estrés Mecánico
12.
Int J Bioprint ; 7(3): 359, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34286148

RESUMEN

The pathological research and drug development of brain diseases require appropriate brain models. Given the complex, layered structure of the cerebral cortex, as well as the constraints on the medical ethics and the inaccuracy of animal models, it is necessary to construct a brain-like model in vitro. In this study, we designed and built integrated three-dimensional (3D) printing equipment for cell printing/culture, which can guarantee cell viability in the printing process and provide the equipment foundation for manufacturing the layered structures with gradient distribution of pore size. Based on this printing equipment, to achieve the purpose of printing the layered structures with multiple materials, we conducted research on the performance of bio-inks with different compositions and optimized the printing process. By extruding and stacking materials, we can print the layered structure with the uniform distribution of cells and the gradient distribution of pore sizes. Finally, we can accurately print a structure with 30 layers. The line width (resolution) of the printed monolayer structure was about 478 mm, the forming accuracy can reach 97.24%, and the viability of cells in the printed structure is as high as 94.5%.

13.
J Mech Behav Biomed Mater ; 118: 104475, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33773239

RESUMEN

Polyether-ether-ketone (PEEK) exhibits excellent mechanical properties and biocompatibility. Three-dimensional (3D) printing of PEEK bone substitutes has been widely used in clinical application. However, the inertness of pure PEEK hinders its integration with the surrounding bone tissue. In this study, for the first time, PEEK/hydroxyapatite (HA) composite specimens were fabricated using fused filament fabrication (FFF) technology. PEEK/HA filaments with HA contents of 0-30 wt% were fabricated via mechanical mixing and extrusion. The HA distributions inside the composite matrix and the surface morphology characteristics of the PEEK/HA composites were examined. The effects of the printing path and HA content on the mechanics of the PEEK/HA composites were systematically investigated. The results indicated that the HA particles were uniformly distributed on the composite matrix. With an increase in the HA content, the modulus of the PEEK/HA composite increased, while the strength and failure strain concomitantly decreased. When the HA content increased to 30 wt%, the tensile modulus of the composite increased by 68.6% compared with that of pure PEEK printed along the horizontal 90° path, while the tensile strength decreased by 48.2% compared with that of pure PEEK printed along the vertical 90° path. The fracture elongation of the printed specimens with different HA contents decreased in the following order: horizontal 0° > horizontal 90° > vertical 90°. The best comprehensive mechanical properties were achieved for pure PEEK fabricated along the horizontal 0° path. The results indicate that FFF technology is applicable for additive manufacturing of PEEK/HA composites with controllable compositions. Printed PEEK/HA composites have potential for applications in the design and manufacturing of personalized bone substitutes.


Asunto(s)
Materiales Biocompatibles , Durapatita , Benzofenonas , Éteres , Cetonas , Polietilenglicoles , Polímeros , Impresión Tridimensional
14.
J Mech Behav Biomed Mater ; 116: 104335, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33494021

RESUMEN

Functional reconstruction of large-size mandibular continuity defect is still a major challenge in the oral and maxillofacial surgery due to the unsatisfactory repair effects and various complications. This study aimed to develop a new functional repair method for mandibular defects combined with 3D-printed polyetheretherketone (PEEK) implant and the free vascularized fibula graft, and evaluated the service performance of the implant under whole masticatory motion. The design criteria and workflows of the mandibular reconstruction were established based on the requirements of safety, functionality, and shape consistency. Both the biomechanical behavior and the mechanobiological property of mandibular reconstruction under various masticatory motion were investigated by the finite element analysis. The maximum von Mises stress of each component was lower than the yield strength of the corresponding material and the safety factor was more than 2.3 times, which indicated the security of the repair method can be guaranteed. Moreover, the actual deformation of the reconstruction model was lower than that of the normal mandible under most clenching tasks, which assured the primary stability. More than 80% of the volume elements in the bone graft can obtain effective mechanical stimulation, which benefited to reduce the risks of bone resorption. Finally, the novel repair method was applied in clinic and good clinical performances have been achieved. Compared with the conventional fibular bone graft for surgical mandibular reconstruction, this study provides excellent safety and stability to accomplish the functional reconstruction and aesthetic restoration of the mandible defect.


Asunto(s)
Reconstrucción Mandibular , Benzofenonas , Trasplante Óseo , Peroné , Cetonas , Mandíbula/cirugía , Polietilenglicoles , Polímeros , Impresión Tridimensional
15.
Comput Methods Programs Biomed ; 197: 105741, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32961386

RESUMEN

BACKGROUND AND OBJECTIVE: Artificial vertebral implant with a lateral or posterior screw-rod fixation system are usually employed in lumbar reconstruction surgery to rebuild the lumbar spine after partial resection due to a tumor or trauma. However, few studies have investigated the effect of the various fixation systems on the biomechanics of the reconstructed lumbar system. This study aims to evaluate the influence of different surgical fixation strategies on the biomechanical performance of a reconstructed lumbar spine system in terms of the strength and long-term stability. METHODS: Two typical lumbar spine reconstruction case models that correspond to lateral or posterior fixation systems were built based on the clinical data. Finite element analyses were performed, and comparisons were made between the two models based on the predicted stress distribution of the reconstructed lumbar spine model, bone-growth area of the endplate, and the range of motion under various normal daily activities. RESULTS: The load from the upper vertebral body was found to be effectively transmitted onto the lower vertebral body by a vertebral implant with the lateral fixation system; this was favorable for bone growth after surgery. However, significantly high stresses were concentrated around the interaction region between the screws and bone, owing to the uneven lateral fixation structure; this may increase the risk of bone fractures and screw loosening in the long term. For the posterior fixation case, stably posterior fixation structure was favorable to maintain stability for the reconstructed lumbar spine. However, the load was mainly transmitted via the fixation rod rather than the vertebral implant, owing to the stress shielding effect. Therefore, the predicted strain on the endplate were insufficient for bone ingrowth under most of the spinal activates, which could cause bone loss and prosthesis loosening. CONCLUSIONS: In this study, the comparisons of the reconstructed lumbar spine system with lateral and posterior fixation strategies were conducted. The Pros and Cons of these two fixation strategies was deeply discussed and the associated clinical issues were provided. The results of this study will have a clear impact in understanding the biomechanics of the lumbar spine with different fixation strategies and providing necessary instructions to the design and application of the lumbar spinal fixation system.


Asunto(s)
Vértebras Lumbares , Cuerpo Vertebral , Fenómenos Biomecánicos , Tornillos Óseos , Análisis de Elementos Finitos , Vértebras Lumbares/cirugía
16.
J Mech Behav Biomed Mater ; 103: 103561, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32090953

RESUMEN

Chest wall reconstructions are mainly needed after surgical treatment of tumors or trauma. The costal cartilage is part of the chest wall, connecting sternum and ribs. The currently existing rib prostheses made of Titanium or PEEK were found lacking the costal cartilage portion, causing unsatisfactory functional rehabilitation of breath. This study proposed a newly bionic methodology for designing a costal cartilage prosthesis using a wavy elastic structure. By changing the design parameters, the mechanical properties can be accurately adjusted. Finite element analysis was carried out for the optimization of the prostheses. Then the prostheses were fabricated by fused deposition modelling manufacturing technology, using PEEK. Mechanical tests were carried out to determine the elastic modulus of the prostheses. The equivalent modulus ranged 0.5-17.3 MPa, and the tensile strength ranged 0.7-8.3 MPa. The results indicated that the mechanical behavior of the designed prostheses were close to those of the natural costal cartilage and that the wavy elastic structure was a reasonable choice for designing a costal cartilage prosthesis. Therefore, the designed PEEK costal cartilage prostheses have the potential as replacement of the natural costal cartilage with better breathing function for the patient undergoing chest wall reconstruction.


Asunto(s)
Cartílago Costal , Benzofenonas , Biónica , Humanos , Cetonas , Polietilenglicoles , Polímeros , Impresión Tridimensional , Prótesis e Implantes , Diseño de Prótesis
17.
Biomech Model Mechanobiol ; 18(3): 607-616, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30570674

RESUMEN

Sheep model is the most favourable choice for animal study for functional evaluation of the cervical fusion prostheses before clinical application; however, significantly large differences between sheep and human existed in terms of morphological characteristics and daily-activity motions. Questions should be raised as whether the differences between the two species have influence on the reliability of sheep model. Finite element models (FEM) of the cervical spinal system were built to characterize the differences between the two species with respect to the range of motion (ROM) and biomechanical behaviour, and experimental cadaver tests on both species were employed for validation purposes. Results indicate that sheep model represents the worst-case scenario of the human model with exaggerated stresses (up to 3 times more) and ROM (up to 10 times more). Moreover, sheep model is very sensitive to the variation of prostheses design, whilst human model does not, which denotes that the sheep model provides a rather amplified effect of a certain design for its biomechanical performance. Therefore, caution needs to be taken when sheep models were used as the animal model for functional evaluation over various design, and the FEM built in this study can be employed as an effective methodology for performance evaluation of cage prostheses of cervical spine.


Asunto(s)
Vértebras Cervicales/cirugía , Fusión Vertebral , Animales , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Modelos Animales , Reproducibilidad de los Resultados , Ovinos
18.
Biomech Model Mechanobiol ; 17(4): 1083-1092, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29730771

RESUMEN

A tumour resection normally involves a large tissue resection and bone replacement. Polyether ether ketone (PEEK) has become a suitable candidate for use in various prostheses owing to its lightness in weight, modulus close to that of natural bone, and good biocompatibility, among other factors. This study proposes a new design method for a rib prosthesis using the centroid trajectory of the natural replaced rib, where the strength can be adjusted by monitoring the cross-sectional area, shape, and properties. A custom-designed rib prosthesis was manufactured using fused deposition modelling (FDM) manufacturing technology, and the mechanical behaviour was found to be close to that of a natural rib. A finite element analysis of the designed rib was carried out under similar loading conditions to those used in mechanical testing. The results indicate that the centroid trajectory derived from a natural rib diaphysis can provide reliable guidance for the design of a rib prosthesis. Such methodology not only offers considerable design freedom in terms of shape and required strength, but also benefits the quality of the surface finishing for samples manufactured using the FDM technique. FDM-printed PEEK rib prostheses have been successfully implanted, and good clinical performances have been achieved.


Asunto(s)
Cetonas/química , Polietilenglicoles/química , Impresión Tridimensional , Prótesis e Implantes , Diseño de Prótesis , Costillas/anatomía & histología , Adulto , Benzofenonas , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Humanos , Masculino , Polímeros , Costillas/diagnóstico por imagen , Estrés Mecánico , Tomografía Computarizada por Rayos X
19.
Proc Inst Mech Eng H ; 232(4): 378-387, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29383959

RESUMEN

Most vertebral body implants that are currently designed and produced in batches have difficulty meeting the patient-specific demands. Moreover, several complications, including a low fusion rate, subsidence occurrence, and rod displacement, are associated with these implants. This study aims to investigate the effects of patient-specific geometric and clinical parameters on the biomechanics of a vertebral body replacement. A three-dimensional patient-specific vertebral body replacement model was established as the basic model for parametric studies, including the anatomic design of the endplates, tilting angle, thickness, and dislocation of the vertebral body implant. A finite element analysis was applied to determine the stress distribution of the vertebral body implant when under various loading conditions. The model with an anatomical interfacing design generates 75% less stress concentration compared to a flat design; the peak stress of the model with a tilted angle closely matching the replaced vertebra segment is decreased by 30%; and the thickness close to the cortical bone can offer better bone growth capability and long-term stability. Patient-specific geometrical parameters were found to significantly affect the biomechanics of a vertebral body replacement, and therefore, a design customized especially for the endplates is necessary for better stability and long-term longevity of the prostheses. Regardless of such progress, how to balance the stability of a vertebral body implant and the safety of the peripheral nervous system remains a clinical challenge.


Asunto(s)
Vértebras Lumbares/cirugía , Fenómenos Mecánicos , Prótesis e Implantes , Análisis de Elementos Finitos , Humanos , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...