Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 349: 126839, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35150855

RESUMEN

This study compared effects of clay minerals before and after firing in immobilization of organic nitrogen and reducing of nitrogen loss during chicken manure composting. The clay minerals and fired clay minerals treatments increased organic nitrogen contents and significantly reduced nitrogen loss, the loss was in order CK (52.61%) > M (47.15%) > I (45.90%) > M- (42.58%) > I- (40.59%). Meanwhile, network analysis indicated that core bacterial community associated with nitrogen transformation were more abundant, and conversion effect of single core bacteria on nitrogen components was enhanced in fired clay minerals treatments. In addition, fired clay minerals strengthened correlation between environmental factors, bacterial community and organic nitrogen, and enhanced interaction of abiotic and biotic pathways, which verified by variance partitioning analysis and structural equation model. Therefore, fired clay minerals play a remarkable driving role in formation and immobilization of organic nitrogen.


Asunto(s)
Compostaje , Animales , Pollos/metabolismo , Arcilla , Estiércol , Minerales , Nitrógeno/metabolismo , Suelo
2.
Environ Pollut ; 294: 118624, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864104

RESUMEN

Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.


Asunto(s)
Compostaje , Metales Pesados , Microbiota , Animales , Pollos , Estiércol , Metales Pesados/análisis , Suelo
3.
Bioresour Technol ; 337: 125403, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34147772

RESUMEN

The aims of this study were to identify the driving factors of humic acid (HA) during rice straw composting based on Fenton pretreatment with bacterial inoculation. Rice straw was pretreated by Fenton reactions and then inoculated during composting, which was set up CK (control), FeW (Fenton pretreatment) and FeWI (Fenton pretreatment + functional bacterial agents). Results indicated that Fenton pretreatment and inoculation of functional bacteria increased the concentration of HA components, which was due to that bacterial composition was changed and bacterial diversity was decreased. Moreover, Fenton pretreatment and inoculation of functional bacteria increased the bacterial amounts of shikimic acid metabolism genes and the correlation between HA components and shikimic acid metabolism genes. Therefore, the functional bacteria were core driving factors, and NH4--N, pH, cellulose and bacterial diversity as key environmental factors to promote the formation of HA components.


Asunto(s)
Compostaje , Oryza , Celulosa , Sustancias Húmicas/análisis , Suelo
4.
Bioresour Technol ; 330: 124960, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33744737

RESUMEN

This study revealed core bacterial metabolic mechanisms involved in carbon (C) and nitrogen (N) in composting with adding MnO2. Two tests (control group (CK), adding MnO2 (M)) were performed. The results indicated that the MnO2 accelerated the transformation of carbon and nitrogen in composting. Core bacteria involved in the C and N conversion were identified, the complementarity effects of core bacteria were stimulated in M composting. Additionally, the influence of core bacteria on the C and N conversion could be divided into two pathways in M composting. One was that core bacteria promoted C and N conversion by accelerating the flow of amino acids into the tricarboxylic acid cycle. Another was that the complementarity effects of core bacteria increased the overall bacterial diversity, which contributed to C and N conversion. These findings showed that the addition of MnO2 to composting was a promising application to treat agricultural organic waste.


Asunto(s)
Compostaje , Bacterias , Carbono , Compuestos de Manganeso , Estiércol , Nitrógeno , Óxidos , Suelo
5.
Bioresour Technol ; 329: 124902, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33657500

RESUMEN

The purpose of this study is to explore the action characteristics of metabolic regulators like adenosine tri-phosphate (ATP) and malonic acid (MA) during rice straw (RS) and fruit and vegetable waste (FVW) composting. Results showed that due to the easy degradation difference, ATP and MA reduced CO2 emission in RS and FVW, respectively. Moreover, adding ATP and MA increased humic acids (HA) content in FVW more significantly (p < 0.05), especially for ATP. However, adding MA accelerated organic matter degradation during RS composting, which was basically consistent with CO2 emission, but it was not effective in promoting HA formation. Furthermore, the microbial community was reshaped by adding ATP and MA. Eventually, structural equation model further confirmed that adding metabolic regulators enhanced the biotic and abiotic pathways of HA formation, and the promotion effect of adding ATP was more obvious. The study has great practical significance for the dispose of agricultural waste.


Asunto(s)
Compostaje , Oryza , Carbono , Sustancias Húmicas/análisis , Suelo
6.
J Colloid Interface Sci ; 591: 300-306, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33611048

RESUMEN

The structural evolution of growing thin colloidal crystals in a confined space via the convective assembly technique has been investigated. The thin colloidal crystals were grown in a wedge-shaped cell, where the height of the cell increased with increased crystal growth. Triangle and square patterns, denoted as [111]- and [100]-oriented grains, respectively, were formed alternately as the height of the cell increased. The structural transformation was associated with an increase in the number of layers when the n-layer [100]-oriented grains changed to n + 1-layer [111]-oriented grains. Between the different grain structures, a stripe pattern was observed, which was a transitional region, where particle configuration gradually changed. The structural transformation occurred through the continuous change of particle configuration rather than through the abrupt formation of a grain boundary. The interval of the strip pattern lengthened as the number of layers increased, which is understood to be the structure with the highest packing density. The findings of the study give a better insight into convective assembly in a confined space, and also contribute to the greater structural control of colloidal crystals, useful for a number of applications.

7.
Bioresour Technol ; 319: 124121, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32957045

RESUMEN

The study aimed to identify the preference of pathways of humus formation. Five lab-scale composting experiments were established: the control (CK), montmorillonite addition (M), illite addition (I), thermal treatment montmorillonite addition (M-) and thermal treatment illite addition (I-). Results showed humus content was increased by 11.5%, 39.3%, 37.2%, 30.9% and 27.6% during CK, M-, M, I- and I composting. Meanwhile, Redundancy analysis indicated the bands of bacteria community related to humic acid (HA) were more abundant in the M- and I- treatments. Furthermore, structural equation model and variance partitioning analysis demonstrated that M- and I- treatments promoted precursors to synthesize HA by coordinated regulation of biotic pathway and abiotic pathway, the increase of HA in the M and I treatments mainly through the abiotic pathway. In summary, an effective method was proposed to improve humus production by adjusting the preference of biotic and abiotic pathways of humus formation.


Asunto(s)
Compostaje , Animales , Bentonita , Pollos , Sustancias Húmicas , Estiércol , Minerales , Suelo
8.
Bioresour Technol ; 318: 124075, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32920337

RESUMEN

The aim of thisstudy was to explore the effects of malonic acid (MA), manganese dioxide (MnO2), malonic acid combined with manganese dioxide (MA + MnO2) additionon reducing CO2 emission and promoting humic substance (HS) formation during composting. The result showed that the addition of MA and MnO2 were an efficient way to reduce CO2 emission. Meanwhile, the CO2 emissions in the MA + MnO2 treatment was 36.8% less than that of the CK, and the amount of humic acid (HA) produced in the MnO2 treatment was 38.7% higher than that of the CK. Structural equation models demonstrated that the addition of exogenoussubstance promoted the conversion of amino acids and reducing sugars to HA. The addition of exogenous substances was the main reason for influencing the concentration of HA. In general, this research provided theoretical supports for the addition of exogenous substances to promote HA formation during composting.


Asunto(s)
Compostaje , Dióxido de Carbono , Sustancias Húmicas , Malonatos , Compuestos de Manganeso , Óxidos , Suelo
9.
Bioresour Technol ; 294: 122224, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31610497

RESUMEN

This study aimed to compare the effects of biochar, montmorillonite and their mixture on nitrogen availability and nitrogen loss during chicken manure composting. Four lab-scale composting experiments, the control (CK), 5% biochar addition (BC), 5% montmorillonite addition (M) and 2.5% biochar + 2.5% montmorillonite addition (BCM), were established. Results showed that the addition of BC, M and BCM significantly improved the contents of bioavailable organic nitrogen and NH4+-N in composts. In addition, BC and BCM reduced N loss by 19.2% and 12.2%, respectively, in comparison with CK. Significant shift of key bacterial communities associated with N transformation were also found in four treatments. Redundancy analysis and structural equation models indicated different additives changed the correlation among bacterial communities, environmental factors and organic N fractions. Comparison of N availability and N loss indicated that the combination of biochar and montmorillonite are more effective than that of separate application during composting.


Asunto(s)
Compostaje , Animales , Bentonita , Carbón Orgánico , Estiércol , Nitrógeno , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...