Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1285094, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38322820

RESUMEN

Traditionally, selective breeding has been used to improve tree growth. However, traditional selection methods are time-consuming and limit annual genetic gain. Genomic selection (GS) offers an alternative to progeny testing by estimating the genotype-based breeding values of individuals based on genomic information using molecular markers. In the present study, we introduced GS to an open-pollinated breeding population of Korean red pine (Pinus densiflora), which is in high demand in South Korea, to shorten the breeding cycle. We compared the prediction accuracies of GS for growth characteristics (diameter at breast height [DBH], height, straightness, and volume) in Korean red pines under various conditions (marker set, model, and training set) and evaluated the selection efficiency of GS compared to traditional selection methods. Training the GS model to include individuals from various environments using genomic best linear unbiased prediction (GBLUP) and markers with a minor allele frequency larger than 0.05 was effective. The optimized model had an accuracy of 0.164-0.498 and a predictive ability of 0.018-0.441. The predictive ability of GBLUP against that of additive best linear unbiased prediction (ABLUP) was 0.86-5.10, and against the square root of heritability was 0.19-0.76, indicating that GS for Korean red pine was as efficient as in previous studies on forest trees. Moreover, the response to GS was higher than that to traditional selection regarding the annual genetic gain. Therefore, we conclude that the trained GS model is more effective than the traditional breeding methods for Korean red pines. We anticipate that the next generation of trees selected by GS will lay the foundation for the accelerated breeding of Korean red pine.

2.
Sci Rep ; 13(1): 18419, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891234

RESUMEN

Abies nephrolepis (Trautv. ex Maxim.) Maxim. has its southernmost populations in South Korea and they are expected to decline under climate change. To establish a strategic conservation plan, this study aimed to investigate the spatial genetic structure and seed characteristics of A. nephrolepis. We used nine microsatellite markers on 165 individuals of A. nephrolepis and sampled seeds in a southernmost population at Mt. Hambaeksan, South Korea. We observed a high level of heterozygosity, and a simulation study found that sampling 20 individuals was enough to secure sufficient genetic diversity on average. Spatial autocorrelation analysis revealed that individuals had a positive genetic relationship until 30 m. Bayesian clustering models, STRUCTURE and GENELAND, failed to achieve a consensus in the optimal number of population (K), estimating K = 1 and K = 2, respectively. Principal coordinate analysis supported the absence of genetic substructure within the study population. There was a large variance in seed production among mother trees. On average, seeds of A. nephrolepis from Mt. Hambaeksan had a purity of 70.4% and a germination percentage of 32.2%. We found that seed weight was the most effective indicator of seed quality. Mother trees at higher altitudes had poorer purity which is threatening to A. nephrolepis considering the upslope retreat of subalpine species under climate change. Our results provide insights into the interactions among spatial processes, genetic structure, and seed quality within a population of A. nephrolepis.


Asunto(s)
Abies , Humanos , Abies/genética , Teorema de Bayes , Semillas/genética , Estructuras Genéticas , República de Corea , Variación Genética , Repeticiones de Microsatélite/genética
3.
BMC Plant Biol ; 22(1): 152, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35346034

RESUMEN

BACKGROUND: Larix kaempferi is one of the major timber species in Northeast Asia. Demand for the reforestation of the species is rising in South Korea due to an increase in large timber production and utilization. However, progeny trials for the species have not been explored, making it challenging to foster advanced generations of tree improvement. In the present study, genetic testing and selection for diameter growth were conducted using pedigree reconstruction and phenotypic spatial distribution analysis in a plantation of L. kaempferi. The aim of the present study was to select the superior larch individuals using the pedigree reconstruction and phenotypic spatial distribution to substitute progeny trials. The plantation of seed orchard crops was established in 1990 and one-hundred and eighty-eight trees were selected as the study material. Genetic variation was investigated first to validate its adequacy as breeding material. Genetic testing was carried out using a model considering pedigree information and spatial autoregression of the phenotypes. RESULTS: The expected heterozygosity of the mother trees and offspring were 0.672 and 0.681 presenting the corresponding level of genetic variation between two groups. The pedigree reconstruction using maternity analysis assigned one to six progenies to ninety-two candidate mothers. The accuracy of genetic testing was exceedingly increased with the animal model considering AR1 ⊗ AR1 structure compared to the animal model only. The estimated genetic variance of the former was 9.086 whereas that of the latter was 4.9E-5 for DBH. The predicted breeding values of the offspring for DBH were ranged from -5.937 cm to 5.655 cm and the estimated heritability of diameter growth was 0.344. CONCLUSIONS: The genetic testing approach based on pedigree reconstruction and phenotypic spatial distribution analysis was considered a useful analytical scheme that could replace or supplement progeny trials.


Asunto(s)
Larix , Pruebas Genéticas , Larix/clasificación , Larix/genética , Fenotipo , Fitomejoramiento , Análisis Espacial
4.
Sci Rep ; 11(1): 6359, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33737673

RESUMEN

Tilia species are valuable woody species due to their beautiful shape and role as honey trees. Somatic embryogenesis can be an alternative method for mass propagation of T. amurensis. However, the molecular mechanisms of T. amurensis somatic embryogenesis are yet to be known. Here, we conducted comparative transcriptional analysis during somatic embryogenesis of T. amurensis. RNA-Seq identified 1505 differentially expressed genes, including developmental regulatory genes. Auxin related genes such as YUC, AUX/IAA and ARF and signal transduction pathway related genes including LEA and SERK were differentially regulated during somatic embryogenesis. Also, B3 domain family (LEC2, FUS3), VAL and PKL, the regulatory transcription factors, were differentially expressed by somatic embryo developmental stages. Our results could provide plausible pathway of signaling somatic embryogenesis of T. amurensis, and serve an important resource for further studies in direct somatic embryogenesis in woody plants.


Asunto(s)
Desarrollo de la Planta/genética , Técnicas de Embriogénesis Somática de Plantas , Tilia/genética , Transcriptoma/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , RNA-Seq , Regeneración/genética , Transducción de Señal/genética , Tilia/crecimiento & desarrollo
5.
BMC Plant Biol ; 20(1): 418, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894043

RESUMEN

BACKGROUND: Gender and fertility variation have an impact on mating dynamics in a population because they affect the gene exchange among parental members and the genetic composition of the resultant seed crops. Fertility is the proportional gametic contribution of parents to their progeny. An effective number of parents, derivative of effective population size, is the probability that two alleles randomly chosen from the gamete gene pool originated from the same parent. The effective number of parents is directly related to the fertility variation among parents, which should be monitored for manipulating gene diversity of seed crops. We formulated a fundamental equation of estimating the effective number of parents and applied it to a seed production population. RESULTS: Effective number of parents (Np) was derived from fertility variation (Ψ) considering covariance (correlation coefficient, r) between maternal and paternal fertility. The Ψ was calculated from the coefficient of variation in reproductive outputs and divided into female (ψf) and male (ψm) fertility variation in the population under study. The Np was estimated from the parental Ψ estimated by the fertility variation of maternal (ψf) and paternal (ψm) parents. The gene diversity of seed crops was monitored by Ψ and Np. in a 1.5 generation Pinus koraiensis seed orchard as a case of monoecious species. A large variation of female and male strobili production was observed among the studied 52 parents over four consecutive years, showing statistically significant differences across all studied years. Parental balance curve showed greater distortion in paternal than maternal parents. The Ψ ranged from 1.879 to 4.035 with greater ψm than ψf, and the Np varied from 14.8 to 36.8. When pooled, the relative effective number of parents was improved as 80.0% of the census number. CONCLUSIONS: We recommend the use of fertility variation (i.e., CV, Ψ), Person's product-moment correlation (r), and effective number of parents (Np) as tools for gauging gene diversity of seed crops in production populations. For increasing Np and gene diversity, additional management options such as mixing seed-lots, equal cone harvest and application of supplemental-mass-pollination are recommended.


Asunto(s)
Productos Agrícolas/genética , Fertilidad/genética , Flores/genética , Pinus/genética , Polen/genética , Polinización/genética , Semillas/genética , Fitomejoramiento , República de Corea
6.
J Agric Food Chem ; 63(8): 2241-8, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25664467

RESUMEN

The fumigant and contact toxicities of 16 Asteraceae plant essential oils and their constituents against adult male and female Blattella germanica were examined. In a fumigant toxicity test, tarragon oil exhibited 100% and 90% fumigant toxicity against adult male German cockroaches at 5 and 2.5 mg/filter paper, respectively. Fumigant toxicities of Artemisia arborescens and santolina oils against adult male German cockroaches were 100% at 20 mg/filter paper, but were reduced to 60% and 22.5% at 10 mg/filter paper, respectively. In contact toxicity tests, tarragon and santolina oils showed potent insecticidal activity against adult male German cockroaches. Components of active oils were analyzed using gas chromatography, gas chromatography-mass spectrometry, or nuclear magnetic resonance spectrometer. Among the identified compounds from active essential oils, estragole demonstrated potent fumigant and contact toxicity against adult German cockroaches. ß-Phellandrene exhibited inhibition of male and female German cockroach acetylcholinesterase activity with IC50 values of 0.30 and 0.28 mg/mL, respectively.


Asunto(s)
Asteraceae/química , Blattellidae/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Esterasas/antagonistas & inhibidores , Proteínas de Insectos/antagonistas & inhibidores , Insecticidas/farmacología , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Animales , Blattellidae/enzimología , Inhibidores Enzimáticos/química , Esterasas/metabolismo , Femenino , Proteínas de Insectos/metabolismo , Insecticidas/química , Masculino , Aceites Volátiles/química , Aceites de Plantas/química
7.
Plant Physiol Biochem ; 84: 158-168, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25285889

RESUMEN

Drought and salt stresses are major environmental constraints on forest productivity. To identify genes responsible for stress tolerance, we conducted a genome-wide analysis in poplar (Populus alba × Populus glandulosa) leaves exposed to drought and salt (NaCl) stresses. We investigated gene expression at the mRNA level using oligonucleotide microarrays containing 44,718 genes from Populus trichocarpa. A total of 1604 and 1042 genes were up-regulated (≥2-fold; P value < 0.05) by drought and salt stresses, respectively, and 765 genes were up-regulated by both stresses. In addition, 2742 and 1685 genes were down-regulated by drought and salt stresses, respectively, and 1564 genes were down-regulated by both stresses. The large number of genes regulated by both stresses suggests that crosstalk occurs between the drought and salt stress responses. Most up-regulated genes were involved in functions such as subcellular localization, signal transduction, metabolism, and transcription. Among the up-regulated genes, we identified 47 signaling proteins, 65 transcription factors, and 43 abiotic stress-related genes. Several genes were modulated by only one of the two stresses. About 25% of the genes significantly regulated by these stresses are of unknown function, suggesting that poplar may provide an opportunity to discover novel stress-related genes.


Asunto(s)
Sequías , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Populus/efectos de los fármacos , Populus/genética , Cloruro de Sodio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos
8.
Pestic Biochem Physiol ; 113: 55-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25052527

RESUMEN

This study investigated the fumigant toxicity of 4 Asteraceae plant essential oils and their constituents against the Japanese termite Reticulitermes speratus Kolbe. Fumigant toxicity varied with plant essential oils or constituents, exposure time, and concentration. Among the tested essential oils, those from Chamaemelum nobile exhibited the strongest fumigant toxicity, followed by those from Santolina chamaecyparissus, Ormenis multicaulis, and Eriocephalus punctulatus at 2 days after treatment. In all, 15, 24, 19, and 9 compounds were identified in the essential oils from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus, respectively, by using gas chromatography, gas chromatography-mass spectrometry, or open-column chromatography. The identified compounds were tested individually for their fumigant toxicity against Japanese termites. Among the test compounds, trans-pinocarveol, caryophyllene oxide, sabinene hydrate, and santolina alcohol showed strong fumigant toxicity against Japanese termites. Acetylcholinesterase (AChE) inhibition activity of the identified compounds from C. nobile, E. punctulatus, O. multicaulis, and S. chamaecyparissus essential oils were tested to determine the mode of their action. The IC50 values of (+)-α-pinene, (-)-limonene, (-)-α-pinene, ß-pinene, and ß-phellandrene against Japanese termite AChE were 0.03, 0.13, 0.41, 0.42, and 0.67mg/mL, respectively. Further studies are warranted to determine the potential of these essential oils and their constituents as fumigants for termite control.


Asunto(s)
Acetilcolinesterasa/metabolismo , Asteraceae/química , Isópteros/efectos de los fármacos , Aceites Volátiles/farmacología , Animales , Activación Enzimática/efectos de los fármacos , Fumigación , Cromatografía de Gases y Espectrometría de Masas
9.
J Plant Res ; 122(2): 153-60, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19137387

RESUMEN

Genetic variation associated with Picea jezoensis populations of South Korea was investigated using chloroplast (cp), mitochondrial (mt) and nuclear DNA markers. In South Korea, P. jezoensis is distributed across a very restricted area, being found on the summits of three mountains: Mts. Jiri, Dokyu and Gyebang. Examination of five region restriction enzyme combinations for mtDNA and four for cpDNA revealed haplotypes endemic to South Korea. The Gyebang population, the most northerly and most isolated, was genetically distinct from the other populations. Nuclear microsatellite markers indicated, overall, a low level of genetic diversity (H (e) = 0.406) in South Korea; this could be attributed to genetic drift and/or founder effects associated with historical events. The Wilcoxon sign-rank test did not indicate a recent bottleneck in any of the populations irrespective of the model considered (infinite allele model, two-phased model of mutation, and stepwise mutation model). Microsatellite markers also demonstrated that the Gyebang population was distinct from the others. The results of this study could be used as the basis for conservation guidelines for the management of this species in South Korea.


Asunto(s)
ADN de Cloroplastos/química , ADN Mitocondrial/química , ADN de Plantas/química , Variación Genética , Picea/genética , Cloroplastos/metabolismo , Evolución Molecular , Marcadores Genéticos , Haplotipos , Mitocondrias/metabolismo , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...