Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 20030, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414667

RESUMEN

Plant variety protection is essential for breeders' rights granted by the International Union for the Protection of New Varieties of Plants. Distinctness, uniformity, and stability (DUS) are necessary for new variety registration; to this end, currently, morphological traits are examined, which is time-consuming and laborious. Molecular markers are more effective, accurate, and stable descriptors of DUS. Advancements in next-generation sequencing technology have facilitated genome-wide identification of single nucleotide polymorphisms. Here, we developed a core set of single nucleotide polymorphism markers to identify cabbage varieties and traits of test guidance through clustering using the Fluidigm assay, a high-throughput genotyping system. Core sets of 87, 24, and 10 markers are selected based on a genome-wide association-based approach. All core markers could identify 94 cabbage varieties and determine 17 DUS traits. A genotypes database was validated using the Fluidigm platform for variety identification, population structure analysis, cabbage breeding, and DUS testing for plant cultivar protection.


Asunto(s)
Brassica , Brassica/genética , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Genotipo , Plantas/genética
2.
Hortic Res ; 9: uhac119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928401

RESUMEN

Lettuce is one of the economically important leaf vegetables and is cultivated mainly in temperate climate areas. Cultivar identification based on the distinctness, uniformity, and stability (DUS) test is a prerequisite for new cultivar registration. However, DUS testing based on morphological features is time-consuming, labor-intensive, and costly, and can also be influenced by environmental factors. Thus, molecular markers have also been used for the identification of genetic diversity as an effective, accurate, and stable method. Currently, genome-wide single nucleotide polymorphisms (SNPs) using next-generation sequencing technology are commonly applied in genetic research on diverse plant species. This study aimed to establish an effective and high-throughput cultivar identification system for lettuce using core sets of SNP markers developed by genotyping by sequencing (GBS). GBS identified 17 877 high-quality SNPs for 90 commercial lettuce cultivars. Genetic differentiation analyses based on the selected SNPs classified the lettuce cultivars into three main groups. Core sets of 192, 96, 48, and 24 markers were further selected and validated using the Fluidigm platform. Phylogenetic analyses based on all core sets of SNPs successfully discriminated individual cultivars that have been currently recognized. These core sets of SNP markers will support the construction of a DNA database of lettuce that can be useful for cultivar identification and purity testing, as well as DUS testing in the plant variety protection system. Additionally, this work will facilitate genetic research to improve breeding in lettuce.

3.
Food Sci Biotechnol ; 31(4): 423-431, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35464241

RESUMEN

Wheat (Triticum aestivum) has diverse uses in the food industry, and different cultivars have unique properties; therefore, it is important to select the optimal cultivar for the intended end use. Here, to establish an identification system for Korean wheat cultivars, we obtained the complete plastome sequences of seven major Korean cultivars. Additionally, the open access database CerealsDB was queried to discover single-copy genomic single-nucleotide polymorphisms (SNPs) in the hexaploid wheat genome. Ten SNPs were developed into allele-specific PCR (ASP) markers, and eight of the SNPs used for ASP markers were converted into TaqMan high-throughput genotyping markers. Phylogenetic analysis using SNP genotypes revealed the genetic diversity and relationships among 137 wheat lines from around the world, including 35 Korean cultivars. This research thus presents a high-throughput authentication system for Korean wheat cultivars that may promote food industry uses of Korean wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01043-w.

4.
Theor Appl Genet ; 135(6): 1923-1937, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35357525

RESUMEN

KEY MESSAGE: Unstable Restorer-of-fertility (Rfu), conferring unstable fertility restoration in the pepper CGMS system, was delimited to a genomic region near Rf and is syntenic to the PPR-like gene-rich region in tomato. The use of cytoplasmic-genic male sterility (CGMS) systems greatly increases the efficiency of hybrid seed production. Although marker development and candidate gene isolation have been performed for the Restorer-of-fertility (Rf) gene in pepper (Capsicum annuum L.), the broad use of CGMS systems has been hampered by the instability of fertility restoration among pepper accessions, especially sweet peppers, due to the widespread presence of the Unstable Restorer-of-fertility (Rfu) locus. Therefore, to investigate the genetic factors controlling unstable fertility restoration in sweet peppers, we developed a segregation population (BC4F5) from crosses using a male-sterile line and an Rfu-containing line. Segregation did not significantly deviate from a 3:1 ratio for unstable fertility restoration to sterility, indicating single dominant locus control for unstable fertility restoration in this population. Genetic mapping delimited the Rfu locus to a 398 kb genomic region on chromosome 6, which is close to but different from the previously identified Rf-containing region. The Rfu-containing region harbors a pentatricopeptide repeat (PPR) gene, along with 10 other candidate genes. In addition, this region is syntenic to the genomic region containing the largest number of Rf-like PPR genes in tomato. Therefore, the dynamic evolution of PPR genes might be responsible for both the restoration and instability of fertility in pepper. During genetic mapping, we developed various molecular markers, including one that co-segregated with Rfu. These markers showed higher accuracy for genotyping than previously developed markers, pointing to their possible use in marker-assisted breeding of sweet peppers.


Asunto(s)
Capsicum , Capsicum/genética , Fertilidad/genética , Genes de Plantas , Genómica , Fitomejoramiento , Infertilidad Vegetal/genética
5.
Plants (Basel) ; 10(2)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669519

RESUMEN

Genetic diversity analysis and cultivar identification were performed using a core set of single nucleotide polymorphisms (SNPs) in cucumber (Cucumis sativus L.). For the genetic diversity study, 280 cucumber accessions collected from four continents (Asia, Europe, America, and Africa) by the National Agrobiodiversity Center of the Rural Development Administration in South Korea and 20 Korean commercial F1 hybrids were genotyped using 151 Fluidigm SNP assay sets. The heterozygosity of the SNP loci per accession ranged from 4.76 to 82.76%, with an average of 32.1%. Population genetics analysis was performed using population structure analysis and hierarchical clustering (HC), which indicated that these accessions were classified mainly into four subpopulations or clusters according to their geographical origins. The subpopulations for Asian and European accessions were clearly distinguished from each other (FST value = 0.47), while the subpopulations for Korean F1 hybrids and Asian accessions were closely related (FST = 0.34). The highest differentiation was observed between American and European accessions (FST = 0.41). Nei's genetic distance among the 280 accessions was 0.414 on average. In addition, 95 commercial F1 hybrids of three cultivar groups (Baekdadagi-, Gasi-, and Nakhap-types) were genotyped using 82 Fluidigm SNP assay sets for cultivar identification. These 82 SNPs differentiated all cultivars, except seven. The heterozygosity of the SNP loci per cultivar ranged from 12.20 to 69.14%, with an average of 34.2%. Principal component analysis and HC demonstrated that most cultivars were clustered based on their cultivar groups. The Baekdadagi- and Gasi-types were clearly distinguished, while the Nakhap-type was closely related to the Baekdadagi-type. Our results obtained using core Fluidigm SNP assay sets provide useful information for germplasm assessment and cultivar identification, which are essential for breeding and intellectual right protection in cucumber.

6.
Plants (Basel) ; 9(9)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933000

RESUMEN

The F-box proteins belong to a family of regulatory proteins that play key roles in the proteasomal degradation of other proteins. Plant F-box proteins are functionally diverse, and the precise roles of many such proteins in growth and development are not known. Previously, two low-temperature-sensitive F-box protein family genes (LTSF1 and LTSF2) were identified as candidates responsible for the sensitivity to low temperatures in the pepper (Capsicum chinense) cultivar 'sy-2'. In the present study, we showed that the virus-induced gene silencing of these genes stunted plant growth and caused abnormal leaf development under low-temperature conditions, similar to what was observed in the low-temperature-sensitive 'sy-2' line. Protein-protein interaction analyses revealed that the LTSF1 and LTSF2 proteins interacted with S-phase kinase-associated protein 1 (SKP1), part of the Skp, Cullin, F-box-containing (SCF) complex that catalyzes the ubiquitination of proteins for degradation, suggesting a role for LTSF1 and LTSF2 in protein degradation. Furthermore, transgenic Nicotiana benthamiana plants overexpressing the pepper LTSF1 gene showed an increased tolerance to low-temperature stress and a higher expression of the genes encoding antioxidant enzymes. Taken together, these results suggest that the LTSF1 and LTSF2 F-box proteins are a functional component of the SCF complex and may positively regulate low-temperature stress tolerance by activating antioxidant-enzyme activities.

7.
Front Plant Sci ; 11: 399, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32328078

RESUMEN

The diverse fruit colors of peppers (Capsicum spp.) are due to variations in carotenoid composition and content. Mature fruit color in peppers is regulated by three independent loci, C1, C2, and Y. C2 and Y encode phytoene synthase (PSY1) and capsanthin-capsorubin synthase (CCS), respectively; however, the identity of the C1 gene has been unknown. With the aim of identifying C1, we analyzed two pepper accessions with different fruit colors: Capsicum frutescens AC08-045 and AC08-201, whose fruits are light yellow and white, respectively. Ultra-performance liquid chromatography showed that the total carotenoid content was six times higher in AC08-045 than in AC08-201 fruits, with similar composition of main carotenoids and slight difference in minor components. These results suggest that a genetic factor in AC08-201 may down-regulate overall carotenoid biosynthesis. Analyses of candidate genes related to carotenoid biosynthesis and plastid abundance revealed that both accessions carry non-functional alleles of CCS, golden2-like transcription factor (GLK2), and PSY1. However, a nonsense mutation (C2571T) in PRR2, a homolog of Arabidopsis pseudo response regulator2-like (APRR2), was present in only AC08-201. In a population derived from a cross between AC08-045 and AC08-201, a SNP marker based on the nonsense mutation co-segregated fully with fruit color, implying that the mutation in PRR2 may cause the white color of AC08-201 fruits. Transmission electron microscopy (TEM) of AC08-201 fruit pericarp also showed less developed granum structure in chloroplast and smaller plastoglobule in chromoplast compared to those of AC08-045. Virus-induced gene silencing (VIGS) of PRR2 significantly reduced carotenoid accumulation in Capsicum annuum 'Micropep Yellow', which carries non-functional mutations in both PSY1 and CCS. Furthermore, sequence analysis of PSY1, CCS, and PRR2 in other white pepper accessions of C. annuum and Capsicum chinense showed that they commonly have non-functional alleles in PSY1, CCS, and PRR2. Thus, our data demonstrate that the fruit color locus C1 in Capsicum spp. corresponds to the gene PRR2.

8.
J Exp Bot ; 71(12): 3417-3427, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32219321

RESUMEN

Phytoene synthase 1 (PSY1) and capsanthin-capsorubin synthase (CCS) are two major genes responsible for fruit color variation in pepper (Capsicum spp.). However, the role of PSY2 remains unknown. We used a systemic approach to examine the genetic factors responsible for the yellow fruit color of C. annuum 'MicroPep Yellow' (MY) and to determine the role of PSY2 in fruit color. We detected complete deletion of PSY1 and a retrotransposon insertion in CCS. Despite the loss of PSY1 and CCS function, both MY and mutant F2 plants from a cross between MY and the 'MicroPep Red' (MR) accumulated basal levels of carotenoids, indicating that other PSY genes may complement the loss of PSY1. qRT-PCR analysis indicated that PSY2 was constitutively expressed in both MR and MY fruits, and a color complementation assay using Escherichia coli revealed that PSY2 was capable of biosynthesizing a carotenoid. Virus-induced gene silencing of PSY2 in MY resulted in white fruits. These findings indicate that PSY2 can compensate for the absence of PSY1 in pepper fruit, resulting in the yellow color of MY fruits.


Asunto(s)
Capsicum , Capsicum/genética , Carotenoides , Frutas/genética , Proteínas de Plantas/genética
9.
Plant Sci ; 287: 110181, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31481212

RESUMEN

The flavonoid compound anthocyanin is an important plant metabolite with nutritional and aesthetic value as well as anti-oxidative capacity. MYB transcription factors are key regulators of anthocyanin biosynthesis in plants. In pepper (Capsicum annuum), the CaAn2 gene, encoding an R2R3 MYB transcription factor, regulates anthocyanin biosynthesis. However, no functional study or structural analysis of functional and dysfunctional CaAn2 alleles has been performed. Here, to elucidate the function of CaAn2, we generated transgenic Nicotiana benthamiana and Arabidopsis thaliana plants expressing CaAn2. All of the tissues in these plants were purple. Promoter analysis of CaAn2 in purple C. annuum 'KC00134' plants revealed the insertion of a non-long terminal repeat (LTR) retrotransposon designated Ca-nLTR-A. To determine the promoter activity and functional domain of Ca-nLTR-A, various constructs carrying different domains of Ca-nLTR-A fused with GUS were transformed into N. benthamiana. Promoter analysis showed that the 3' untranslated region (UTR) of the second open reading frame of Ca-nLTR-A is responsible for CaAn2 expression in 'KC00134'. Sequence analysis of Ca-nLTR-A identified transcription factor binding sites known to regulate anthocyanin biosynthesis. This study indicates that insertion of a non-LTR retrotransposon in the promoter may activate expression of CaAn2 by recruiting transcription factors at the 3' UTR and thus provides the first example of exaptation of a non-LTR retrotransposon into a new promoter in plants.


Asunto(s)
Antocianinas/biosíntesis , Capsicum/metabolismo , Proteínas de Plantas/metabolismo , Retroelementos/fisiología , Factores de Transcripción/metabolismo , Antocianinas/metabolismo , Arabidopsis , Capsicum/genética , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Retroelementos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nicotiana , Técnicas del Sistema de Dos Híbridos
10.
Plant Biotechnol J ; 17(6): 1081-1093, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30467964

RESUMEN

The diverse colours of mature pepper (Capsicum spp.) fruit result from the accumulation of different carotenoids. The carotenoid biosynthetic pathway has been well elucidated in Solanaceous plants, and analysis of candidate genes involved in this process has revealed variations in carotenoid biosynthetic genes in Capsicum spp. However, the allelic variations revealed by previous studies could not fully explain the variation in fruit colour in Capsicum spp. due to technical difficulties in detecting allelic variation in multiple candidate genes in numerous samples. In this study, we uncovered allelic variations in six carotenoid biosynthetic genes, including phytoene synthase (PSY1, PSY2), lycopene ß-cyclase, ß-carotene hydroxylase, zeaxanthin epoxidase and capsanthin-capsorubin synthase (CCS) genes, in 94 pepper accessions by single-molecule real-time (SMRT) sequencing. To investigate the relationship between allelic variations in the candidate genes and differences in fruit colour, we performed ultra-performance liquid chromatography analysis using 43 accessions representing each allelic variation. Different combinations of dysfunctional mutations in PSY1 and CCS could explain variation in the compositions and levels of carotenoids in the accessions examined in this study. Our results demonstrate that SMRT sequencing technology can be used to rapidly identify allelic variation in target genes in various germplasms. The newly identified allelic variants will be useful for pepper breeding and for further analysis of carotenoid biosynthesis pathways.


Asunto(s)
Alelos , Capsicum , Carotenoides , Variación Genética , Pigmentos Biológicos , Capsicum/genética , Capsicum/metabolismo , Carotenoides/metabolismo , Frutas/genética , Pigmentos Biológicos/genética , Análisis de Secuencia de ADN
11.
Nat Commun ; 9(1): 553, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29396394

RESUMEN

The previously published version of this Article contained errors in Figure 5. In panel c, the second and fourth blot images were incorrectly labeled 'α-Myc' and should have been labelled 'α-HA'. These errors have been corrected in both the PDF and HTML versions of the Article.

12.
Sci Rep ; 8(1): 2136, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29391436

RESUMEN

Various medicinal plants are threatened with extinction owing to their over-exploitation and the prevalence of soil borne pathogens. In this study, soils infected with root-rot pathogens, which prevent continuous-cropping, were treated with an electron beam. The level of soil-borne fungus was reduced to ≤0.01% by soil electron beam treatment without appreciable effects on the levels of antagonistic microorganism or on the physicochemical properties of the soil. The survival rate of 4-year-old plant was higher in electron beam-treated soil (81.0%) than in fumigated (62.5%), virgin (78%), or untreated-replanting soil (0%). Additionally, under various soils conditions, neutron tomography permitted the monitoring of plant health and the detection of root pathological changes over a period of 4-6 years by quantitatively measuring root water content in situ. These methods allow continual cropping on the same soil without pesticide treatment. This is a major step toward the environmentally friendly production of endangered therapeutic herbs.


Asunto(s)
Productos Agrícolas , Electrones/uso terapéutico , Neutrones , Panax notoginseng/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Microbiología del Suelo/normas , Suelo/química , Panax notoginseng/efectos de la radiación , Raíces de Plantas/efectos de la radiación , Tomografía Computarizada por Rayos X
13.
Nat Commun ; 8(1): 2259, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273730

RESUMEN

In Arabidopsis thaliana, CONSTANS (CO) plays an essential role in the regulation of photoperiodic flowering under long-day conditions. CO protein is stable only in the afternoon of long days, when it induces the expression of FLOWERING LOCUS T (FT), which promotes flowering. The blue-light photoreceptor FLAVIN-BINDING, KELCH REPEAT, F-BOX1 (FKF1) interacts with CO and stabilizes it by an unknown mechanism. Here, we provide genetic and biochemical evidence that FKF1 inhibits CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-dependent CO degradation. Light-activated FKF1 has no apparent effect on COP1 stability but can interact with and negatively regulate COP1. We show that FKF1 can inhibit COP1 homo-dimerization. Mutation of the coiled-coil domain in COP1, which prevents dimer formation, impairs COP1 function in coordinating flowering time. Based on these results, we propose a model whereby the light- and day length-dependent interaction between FKF1 and COP1 controls CO stability to regulate flowering time.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/genética , Luz , Fotoperiodo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Arabidopsis , Dimerización , Mutación , Plantas Modificadas Genéticamente , Ubiquitina-Proteína Ligasas/metabolismo
14.
New Phytol ; 213(2): 886-899, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27612097

RESUMEN

Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.


Asunto(s)
Capsicum/genética , Capsicum/virología , Resistencia a la Enfermedad/genética , Evolución Molecular , Genes de Plantas , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Segregación Cromosómica/genética , Sitios Genéticos , Familia de Multigenes , Mapeo Físico de Cromosoma , Plantas Modificadas Genéticamente , Nicotiana/virología
15.
Oncotarget ; 7(28): 44596-44607, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27331873

RESUMEN

O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) increases O-GlcNAc modification (O-GlcNAcylation), and transcriptional co-regulator host cell factor 1 (HCF-1) is one of OGT targets. High-risk Human Papillomaviruses (HPVs) encode E6 and E7 oncoproteins, which promote cervical cancer. Here, we tested whether O-GlcNAc modification of HCF-1 affects HPV E6 and E7 expressions and tumorigenesis of cervical cancer. We found that depleting OGT with OGT-specific shRNA significantly decreased levels of E6 and E7 oncoproteins, and cervical cancer tumorigenesis, while OGT overexpression greatly increased levels of E6 and E7 oncoproteins. Notably, OGT overexpression caused dose-dependent increases in the transcriptional activity of E6 and E7, and this activity was decreased when HCF-1 was depleted with HCF-1-specific siRNA. Moreover, OGT depletion reduced proliferation, invasion, and metastasis in cervical cancer cells. Further, high glucose enhanced the interaction between OGT and HCF-1, paralleling increased levels of E6 and E7 in cervical cancer cells. Most importantly, we found that reducing OGT in HeLa cells caused decreased tumor growth in vivo. These findings identify OGT as a novel cellular factor involved in E6 and E7 expressions and cervical cancer tumorigenesis, suggesting that targeting OGT in cervical cancer may have potential therapeutic benefit.


Asunto(s)
Carcinogénesis/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Neoplasias del Cuello Uterino/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinogénesis/genética , Carcinogénesis/patología , Línea Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Femenino , Células HeLa , Factor C1 de la Célula Huésped/genética , Factor C1 de la Célula Huésped/metabolismo , Humanos , Immunoblotting , Persona de Mediana Edad , N-Acetilglucosaminiltransferasas/genética , Proteínas E7 de Papillomavirus/metabolismo , Interferencia de ARN , Proteínas Represoras/metabolismo , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología
16.
PLoS One ; 11(1): e0146320, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26751216

RESUMEN

Cucumber mosaic virus (CMV) is a destructive pathogen affecting Capsicum annuum (pepper) production. The pepper Cmr1 gene confers resistance to most CMV strains, but is overcome by CMV-P1 in a process dependent on the CMV-P1 RNA1 helicase domain (P1 helicase). Here, to identify host factors involved in CMV-P1 infection in pepper, a yeast two-hybrid library derived from a C. annuum 'Bukang' cDNA library was screened, producing a total of 76 potential clones interacting with the P1 helicase. Beta-galactosidase filter lift assay, PCR screening, and sequencing analysis narrowed the candidates to 10 genes putatively involved in virus infection. The candidate host genes were silenced in Nicotiana benthamiana plants that were then inoculated with CMV-P1 tagged with the green fluorescent protein (GFP). Plants silenced for seven of the genes showed development comparable to N. benthamiana wild type, whereas plants silenced for the other three genes showed developmental defects including stunting and severe distortion. Silencing formate dehydrogenase and calreticulin-3 precursor led to reduced virus accumulation. Formate dehydrogenase-silenced plants showed local infection in inoculated leaves, but not in upper (systemic) leaves. In the calreticulin-3 precursor-silenced plants, infection was not observed in either the inoculated or the upper leaves. Our results demonstrate that formate dehydrogenase and calreticulin-3 precursor are required for CMV-P1 infection.


Asunto(s)
Capsicum/genética , Cucumovirus/enzimología , Genes de Plantas , ARN Helicasas/metabolismo , Agrobacterium/metabolismo , Calreticulina/genética , Cucumovirus/genética , ADN Complementario/metabolismo , Formiato Deshidrogenasas/genética , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Enfermedades de las Plantas/genética , Hojas de la Planta/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Técnicas del Sistema de Dos Híbridos , beta-Galactosidasa/metabolismo
17.
Oncotarget ; 7(4): 4632-46, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26716415

RESUMEN

Raf kinase inhibitory protein (RKIP), an endogenous inhibitor of the extracellular signal-regulated kinase (ERK) pathway, has been implicated as a suppressor of metastasis and a prognostic marker in cancers. However, how RKIP acts as a suppressor during metastasis is not fully understood. Here, we show that RKIP activity in cervical and stomach cancer is inversely correlated with endogenous levels of the Notch1 intracellular domain (NICD), which stimulates the epithelial to mesenchymal transition (EMT) and metastasis. The levels of RKIP were significantly decreased in tumor tissues compared to normal tissues, whereas NICD levels were increased. Overexpression of RKIP in several cell lines resulted in a dramatic decrease of NICD and subsequent inhibition of several mesenchymal markers, such as vimentin, N-cadherin, and Snail. In contrast, knockdown of RKIP exhibited opposite results both in vitro and in vivo using mouse models. Nevertheless, knockdown of Notch1 in cancer cells had no effect on the expression of RKIP, suggesting that RKIP is likely an upstream regulator of the Notch1 pathway. We also found that RKIP directly interacts with Notch1 but has no influence on the intracellular level of the γ-secretase complex that is necessary for Notch1 activation. These data suggest that RKIP plays a distinct role in activation of Notch1 during EMT and metastasis, providing a new target for cancer treatment.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/secundario , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Receptor Notch1/metabolismo , Neoplasias Gástricas/patología , Neoplasias del Cuello Uterino/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Western Blotting , Cadherinas/genética , Cadherinas/metabolismo , Ciclo Celular , Movimiento Celular , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Técnicas para Inmunoenzimas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástasis Linfática , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , FN-kappa B/genética , FN-kappa B/metabolismo , Invasividad Neoplásica , Estadificación de Neoplasias , Proteínas de Unión a Fosfatidiletanolamina/genética , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Notch1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Eur Arch Otorhinolaryngol ; 273(4): 879-87, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25956615

RESUMEN

The objective of this study was to evaluate the clinical significance of delayed-onset hearing loss in children. Seventy-three children who underwent cochlear implantation (CI) were included. They were divided into a congenital hearing loss group (n = 50) and a delayed-onset hearing loss group (n = 23). The age at diagnosis of hearing loss, age at the beginning of auditory habilitation, the age at CI, and the postimplant speech perception abilities were compared between the two groups. Children in the congenital hearing loss group were confirmed to have hearing loss at a mean age of 0.3 years, and those in the delayed-onset hearing loss group were diagnosed with hearing loss at a mean age of 2.0 years. Auditory habilitation began at a mean age of 0.4 and 2.0 years, and CI was performed at a mean age of 1.4 and 2.6 years, respectively. Children in the congenital hearing loss group had better scores on speech perception tests than those in the delayed-onset hearing loss group, but the differences were not significant. About half of the children with delayed-onset hearing loss (57 %) had risk factors associated with delayed-onset hearing loss. A high prevalence of delayed-onset hearing loss was noted in the group of children who underwent CI. Risk factors for hearing loss were not found in 43 % of children with delayed-onset hearing loss. Universal screening for delayed-onset hearing loss needs to be performed during early childhood.


Asunto(s)
Implantación Coclear , Pérdida Auditiva Sensorineural , Percepción del Habla , Edad de Inicio , Preescolar , Implantación Coclear/métodos , Implantación Coclear/rehabilitación , Implantación Coclear/estadística & datos numéricos , Implantes Cocleares , Diagnóstico Precoz , Femenino , Pérdida Auditiva Sensorineural/congénito , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/epidemiología , Pérdida Auditiva Sensorineural/cirugía , Pruebas Auditivas/métodos , Humanos , Lactante , Recién Nacido , Masculino , Tamizaje Neonatal/métodos , Prevalencia , República de Corea/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Tiempo de Tratamiento
19.
Int J Mol Sci ; 16(11): 26493-505, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26556345

RESUMEN

In Arabidopsis, CONSTITUTIVE PHOTOMORPHOGENIC/DE-ETIOLATED/FUSCA (COP/DET/FUS) genes act in repression of photomorphogenesis in darkness, and recent reports revealed that some of these genes, such as COP1 and DET1, also have important roles in controlling flowering time and circadian rhythm. The COP/DET/FUS protein COP10 interacts with DET1 and DNA DAMAGE-BINDING PROTEIN 1 (DDB1) to form a CDD complex and represses photomorphogenesis in darkness. The cop10-4 mutants flower normally in inductive long days (LD) but early in non-inductive short days (SD) compared with wild type (WT); however, the role of COP10 remains unknown. Here, we investigate the role of COP10 in SD-dependent floral repression. Reverse transcription-quantitative PCR revealed that in SD, expression of the LD-dependent floral inducers GI, FKF1, and FT significantly increased in cop10-4 mutants, compared with WT. This suggests that COP10 mainly regulates FT expression in a CO-independent manner. We also show that COP10 interacts with GI in vitro and in vivo, suggesting that COP10 could also affect GI function at the posttranslational level. Moreover, FLC expression was repressed drastically in cop10-4 mutants and COP10 interacts with MULTICOPY SUPPRESSOR OF IRA1 4 (MSI4)/FVE (MSI4/FVE), which epigenetically inhibits FLC expression. These data suggest that COP10 contributes to delaying flowering in the photoperiod and autonomous pathways by downregulating FT expression under SD.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/genética , Flores/metabolismo , Fotoperiodo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Unión Proteica , Sitios de Carácter Cuantitativo , Transducción de Señal
20.
Audiol Neurootol ; 20(5): 314-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26277845

RESUMEN

OBJECTIVE: To identify clinical criteria for selecting the aiding device for the contralateral ear of children with a unilateral cochlear implant (CI). METHODS: Sixty-five children, including 36 bilateral CI users and 29 bimodal users, participated in the study. A speech perception test (monosyllabic word test) in noise was administered. The target speech (65 dB sound pressure level) was presented from the front loudspeaker, and noise (10 dB signal-to-noise ratio) was presented from 3 directions: from in front of the child and 90° to the child's right and left sides. The test was performed using the first CI alone and under bilateral CI or bimodal conditions. The bilateral benefits to speech perception in noise were compared between bilateral CI users and bimodal users. RESULTS: Significant benefits in speech perception in noise were evident in bilateral CI users in all 3 noise conditions. In bimodal users, the hearing threshold at low frequencies of ≤1 kHz in the nonimplanted ear affected the bilateral benefit. Bimodal users with a low-frequency hearing threshold ≤90 dB hearing level (HL) showed a significant bilateral benefit in various noise conditions. By contrast, bimodal users with a low-frequency hearing threshold >90 dB HL showed no significant bilateral benefits in all 3 noise conditions. CONCLUSIONS: Bilateral CI and bimodal listening provide better speech perception in noise than unilateral CI alone in children. The contralateral CI is better than bimodal listening for children with a low-frequency hearing threshold >90 dB HL. A hearing threshold at low frequencies of ≤1 kHz may be a good criterion for deciding on the type of device for the contralateral ear of children with a unilateral CI.


Asunto(s)
Percepción Auditiva/fisiología , Implantación Coclear , Implantes Cocleares , Audífonos , Pérdida Auditiva Sensorineural/terapia , Localización de Sonidos/fisiología , Percepción del Habla/fisiología , Adolescente , Niño , Preescolar , Femenino , Pérdida Auditiva Sensorineural/congénito , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...