Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
J Vis Exp ; (208)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38949297

RESUMEN

Metal-organic frameworks (MOFs) are materials with potential applications in fields such as gas adsorption and separation, catalysis, and biomedicine. Attempts to enhance the utility of MOFs have involved the preparation of various composites, including polymer-grafted MOFs. By directly grafting polymers to the external surface of MOFs, issues of incompatibility between polymers and MOFs can be overcome. Polymer brushes grafted from the surface of MOFs can serve to stabilize the MOF while enabling particle assembly into self-assembled metal-organic framework monolayers (SAMMs) via polymer-polymer interactions. Control over the chemical composition and molecular weight of the grafted polymer can allow for tuning of the SAMM characteristics. In this work, instructions are provided on how to immobilize a chain transfer agent (CTA) onto the surface of the MOF UiO-66 (UiO = Universitetet i Oslo). The CTA serves as initiation sites for the growth of polymers. Once polymer chains are grown from the MOF surface, the formation of SAMMs is achieved through self-assembly at an air-water interface. The resulting SAMMs are characterized and shown to be freestanding by scanning electron microscopy imaging. The methods presented in this paper are expected to make the preparation of SAMMs more accessible to the research community and thereby expand their potential use as a MOF-polymer composite.


Asunto(s)
Polímeros , Polímeros/química , Compuestos Organometálicos/química , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/síntesis química , Ácidos Ftálicos
2.
Perit Dial Int ; : 8968608241252015, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738926

RESUMEN

BACKGROUND: Varying peritoneal dialysis (PD)-related clinical outcomes have been reported in different countries. As a participant of the Peritoneal Dialysis Outcomes and Practice Patterns Study (PDOPPS), this study investigated the characteristics of Korean PD patients, PD facilities and the incidence rates of clinical outcomes including mortality and PD-related outcomes. METHODS: From July 2019 to December 2021, a total of 766 Korean PD patients were included for analysis. Poisson regression analysis was used to explore the incidence rates of various clinical events including mortality, modality transfer, exit site or catheter tunnel infection and peritonitis. RESULTS: Among the 766 patients (median age 55.5 years, males 59.5%), 276 were incident and 490 were prevalent PD patients. The incidence rates of events were as follows: all-cause mortality (0.048), modality transfer (0.051), exit site or catheter tunnel infection (0.054) and peritonitis (0.136) events per person year. The most common causative organism for exit site or tunnel infection was staphylococcus species (47%) and that for peritonitis was streptococcus (28%) followed by staphylococcus (27%) species. CONCLUSIONS: Up to now, PDOPPS Korea has recruited 766 Korean PD patients and started documentation of major PD-related outcomes which occurred during the follow-up period. The overall incidence rates of clinical outcomes in Korean PD patients were relatively favourable. There was no statistically significant difference in the incidence rates of clinical outcomes according to both facility and patient factors.

3.
Int J Biol Macromol ; 265(Pt 1): 130854, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484814

RESUMEN

Monocarboxylate transporter-1 (MCT-1) inhibitors were screened from the Fv-antibody library, which contained complementary determining region 3 with randomized amino acid sequences (11 residues) through site-directed mutagenesis. Fv-antibodies against MCT-1 were screened from the autodisplayed Fv-antibody library. Two clones were screened, and the binding affinity (KD) against MCT-1 was estimated using flow cytometry. The screened Fv-antibodies were expressed as soluble fusion proteins (Fv-1 and Fv-2) and the KD for MCT-1 was estimated using the SPR biosensor. The inhibitory activity of the expressed Fv-antibodies was observed in HEK293T and Jurkat cell lines by measuring intracellular pH and lactate accumulation. The level of cell viability in HEK293T and Jurkat cell lines was decreased by the inhibitory activity of the expressed Fv-antibodies. The binding properties of the Fv-antibodies to MCT-1 were analyzed using molecular docking simulations. Overall, the results showed that the screened Fv-antibodies against MCT-1 from the Fv-antibody library had high binding affinity and inhibitory activity against MCT-1, which could be used as potential therapeutic drug candidates for the MCT-1 inhibitor.


Asunto(s)
Anticuerpos , Proteínas Portadoras , Humanos , Simulación del Acoplamiento Molecular , Células HEK293 , Secuencia de Aminoácidos , Biblioteca de Genes
4.
J Mater Chem B ; 12(15): 3751-3763, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38532694

RESUMEN

In this study, a one-step immunoassay for porcine epidemic diarrhea virus (PEDV) based on Fv-antibodies and switching peptides was developed, and the assay results of PEDV were obtained by just mixing samples without any further reaction or washing steps. The Fv-antibodies with binding affinity to the spike protein of PEDV were screened from the Fv-antibody library using the receptor-binding domain (RBD) of the spike protein as a screening probe. Screened Fv-antibodies with binding affinities to the RBD antigen were expressed, and the binding constants (KD) were calculated to be 83-142 nM. The one-step immunoassay for the detection of PEDV was configured as a displacement immunoassay using a fluorescence-labeled switching peptide. The one-step immunoassay based on switching peptides was performed using PEDV, and the limit of detection (LOD) values for PEDV detection were estimated to be Ct = 39.7-36.4. Compared with the LOD value for a conventional lateral flow immunoassay (Ct = 33.0), the one-step immunoassay showed a remarkably improved LOD for the detection of PEDV. Finally, the interaction between the screened Fv-antibodies and the PEDV RBD was investigated using docking simulations and compared with the amino acid sequences of the receptors on host cells, such as aminopeptidase N (APN) and angiotensin-converting enzyme-2 (ACE-2).


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Animales , Porcinos , Virus de la Diarrea Epidémica Porcina/metabolismo , Glicoproteína de la Espiga del Coronavirus , Inmunoensayo/métodos , Péptidos , Anticuerpos Antivirales
5.
Artículo en Inglés | MEDLINE | ID: mdl-38382158

RESUMEN

BACKGROUND: TB-500 (Ac-LKKTETQ), derived from the active site of thymosin ß4 (Tß4), has various biological functions in its unacetylated form, LKKTETQ. These functions include actin binding, dermal wound healing, angiogenesis, and skin repair. The biological effects of TB-500, however, have not been documented. And the analysis of TB-500 and its metabolites have been neither simultaneously quantified nor structurally identified using synthesized authentic standards. METHODS: This study was aimed to investigating simultaneous analytical methods of TB-500 and its metabolites in in-vitro and urine samples by using UHPLC-Q-Exactive orbitrap MS, and to comparing the biological activity of its metabolites with the parent TB-500. The metabolism of TB-500 was investigated in human serum, various in-vitro enzyme systems, and urine samples from rats treated with TB-500, and their biological activities measured by cytotoxicity and wound healing experiments were also evaluated in fibroblasts. RESULTS: The simultaneous analytical method for TB-500 and its metabolites was developed and validated. The study found that Ac-LK was the primary metabolite with the highest concentration in rats at 0-6 h intervals. Also, the metabolite Ac-LKK was a long-term metabolite of TB-500 detected up to 72 hr. No cytotoxicity of the parent and its metabolites was found. Ac-LKKTE only showed a significant wound healing activity compared to the control. CONCLUSION: The study provides a valuable tool for quantifying TB-500 and its metabolites, contributing to the understanding of metabolism and potential therapeutic applications. Our results also suggest that the previously reported wound-healing activity of TB-500 in literature may be due to its metabolite Ac-LKKTE rather than the parent form.


Asunto(s)
Espectrometría de Masas en Tándem , Cicatrización de Heridas , Ratas , Humanos , Animales , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos
6.
ACS Appl Mater Interfaces ; 16(7): 9068-9077, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38345827

RESUMEN

Metal-organic frameworks (MOFs), a sort of crystalline porous coordination polymers composed of metal ions and organic linkers, have been intensively studied for their ability to take up nonpolar gas-phase molecules such as ethane and ethylene. In this context, interpenetrated MOFs, where multiple framework nets are entwined, have been considered promising materials for capturing nonpolar molecules due to their relatively higher stability and smaller micropores. This study explores a solvent-assisted reversible strategy to interpenetrate and deinterpenetrate a Cu(II)-based MOF, namely, MOF-143 (noninterpenetrated form) and MOF-14 (doubly interpenetrated forms). Interpenetration was achieved using protic solvents with small molecular sizes such as water, methanol, and ethanol, while deinterpenetration was accomplished with a Lewis-basic solvent, pyridine. Additionally, this study investigates the adsorptive separation of ethane and ethylene, which is a significant application in the chemical industry. The results showed that interpenetrated MOF-14 exhibited higher ethane and ethylene uptakes compared to the noninterpenetrated MOF-143 due to narrower micropores. Furthermore, we demonstrate that pristine MOF-14 displayed higher ethane selectivity than transformed MOF-14 from MOF-143 by identifying the "fraction of micropore volume" as a key factor influencing ethane uptake. These findings highlight the potential of controlled transformations between interpenetrated and noninterpenetrated MOFs, anticipating that larger MOF crystals with narrower micropores and higher crystallinity will be more suitable for selective gas capture and separation applications.

7.
ACS Pharmacol Transl Sci ; 7(1): 150-160, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38230273

RESUMEN

Serotonin-like mimotopes were screened from the Fv-antibody library to be used as inhibitors against monoamine oxidase A (MAO-A). The Fv-antibody [corresponding to the VH region of immunoglobulin G (IgG)] consists of three complementarity-determining regions and four frame regions. The Fv-antibody library was prepared by site-directed mutagenesis of CDR3, which consists of 11 amino acid residues. Three target clones were screened from the Fv-antibody library, and the binding affinity of the screened clones to the monoclonal anti-serotonin antibody was analyzed using fluorescence-activated cell sorting. The screened Fv-antibodies were expressed as soluble proteins fused with green fluorescence protein. Additionally, the screened CDR3 regions (11 residues) of the selected Fv-antibodies were synthesized as peptides with linking amino acid residues. The binding constants (KD) of the three serotonin-like mimotopes (Fv-antibodies and peptides) were estimated using a surface plasmon resonance biosensor. The inhibitory activity (IC50) of the serotonin-like mimotopes (Fv-antibodies and peptides) was estimated separately for MAO-A and MAO-B enzymes and compared with that of conventional inhibitors. Finally, the screened serotonin-like mimotopes were used to treat a cell line (SH-SY5Y, ATCC code: CRL-2266) expressing serotonin receptors. This was done to confirm the following two aspects: (1) the binding of mimotopes to the serotonin receptors on the cell surface and (2) the inhibitory activity of mimotopes against MAO-A enzymes in the cell lysates.

8.
Heliyon ; 10(2): e24283, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38293374

RESUMEN

Garlic, a key ingredient in kimchi, is an indispensable source of lactic acid bacteria, which are essential for fermentation. This study explored the effects of various garlic varieties on kimchi fermentation, focusing on changes in microbial communities and metabolite profiles. We observed that the type of garlic used did not significantly alter the microbial community. However, the presence of garlic itself made a significant difference. Specifically, kimchi with garlic showed higher abundance of Leuconostoc and Weissella, which are bacteria primarily responsible for kimchi fermentation. Additionally, kimchi containing garlic had increased levels of mannitol and fructose, which significantly influence taste; however, lactic acid and putrescine levels were decreased. Therefore, the addition of garlic directly contributes to the flavor profile of kimchi. Sixty-two metabolites were identified using gas chromatography and mass spectrometry. The variety of garlic added influenced the metabolite profiles of kimchi, particularly in the later stages of fermentation. These profiles were categorized based on the garlic's origin, whether from southern or northern ecotypes (R2X = 0.933, R2Y = 0.986, Q2 = 0.878). These findings confirm that both the presence and the variety of garlic significantly impact the microbial ecology and metabolites during kimchi fermentation, underscoring its essential role in the process.

9.
J Am Chem Soc ; 146(1): 646-659, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38151051

RESUMEN

Among the various metal-organic framework (MOF) adsorbents, diamine-functionalized Mg2(dobpdc) (dobpdc4- = 4,4-dioxidobiphenyl-3,3'-dicarboxylate) shows remarkable carbon dioxide removal performance. However, applying diamine-functionalized Mg2(dobpdc) in practical applications is premature because it shows persistent performance degradation under real flue gas conditions containing water vapor owing to diamine loss during wet cycles. To address this issue, we employed hydrophobic carbonate compounds to protect diamine groups in een-Mg2(dobpdc) (een-MOF, een = N-ethylethylenediamine). tert-Butyl dicarbonate (Boc) reacted rapidly with diamines at the pore openings of MOF particles to form dense secondary and tertiary hydrophobic amines, effectively preventing moisture ingress. The Boc-protected een-MOF-Boc1 maintained excellent CO2 adsorption even under simulated flue gas conditions containing 10% H2O. This observation indicates that Boc protection renders een groups intact during repeated wet cycles, suggesting that Boc-protected een groups are resistant to replacement by water molecules. To increase the practicability of the MOF adsorbent, we fabricated een-MOF/PAN-Boc1 composite beads by shaping MOF particles with polyacrylonitrile (PAN). Notably, the composite beads maintained their CO2 adsorption performance even after repeating the temperature swing adsorption process more than 150 times in 10% water vapor. Furthermore, breakthrough tests showed that the dynamic CO2 separation performance was retained under humid conditions. These results demonstrate that Boc protection provides an easy and effective way to develop promising adsorbents with high CO2 adsorption capacity, long-term durability, and the properties required for postcombustion applications.

10.
ACS Pharmacol Transl Sci ; 6(12): 1945-1957, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38093831

RESUMEN

Pancreatic ribonuclease A (RNase A) inhibitors were screened from an autodisplayed Fv-antibody library, which was prepared by randomizing amino acid sequences of the third complementary-determining region (CDR3) within the heavy chain variable region (VH region) of immunoglobulin G (called "Fv-antibody" comprising three CDRs and four frame regions (FRs)) through site-directed mutagenesis. The library was autodisplayed on the outer membrane of Escherichia coli. Target Fv-variants (clones) with specific binding affinity for RNase A were screened using fluorescein-labeled RNase A and flow cytometry. Three Fv variants (clones) were screened, and CDR3 amino acid sequences were analyzed. The screened Fv-antibodies were expressed as soluble proteins, and CDR3 was synthesized into peptides (11 residues). The binding affinity constants (KD) of the expressed Fv-antibodies and synthesized peptides to RNase A were estimated using surface plasmon resonance. Fitting analysis based on the adsorption model showed that KD values of the three expressed Fv-antibodies were estimated to be 17.5 ± 4.1, 28.8 ± 9.7, and 33.9 ± 8.9 nM (n = 3), and those of the three synthesized peptides were 1.3 ± 0.1, 1.3 ± 0.3, and 3.7 ± 1.3 µM (n = 3). From the RNase activity assay with an RNA probe labeled with fluorophore and quencher, inhibition constants (IC50) of the three expressed Fv-antibodies were estimated to be 90.2, 65.3, and 98.8 nM (n = 3), and those of the three synthesized peptides were 8.1, 3.6, and 0.4 µM (n = 3). The activity of RNase inhibitors constituting the expressed Fv-antibodies and synthesized peptides was demonstrated via an RNA cleavage test using the total RNA from HeLa cells.

11.
Nutrients ; 15(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38068826

RESUMEN

Osteoporosis, which is often associated with increased osteoclast activity due to menopause or aging, was the main focus of this study. We investigated the inhibitory effects of water extract of desalted Salicornia europaea L. (WSE) on osteoclast differentiation and bone loss in ovariectomized mice. Our findings revealed that WSE effectively inhibited RANKL-induced osteoclast differentiation, as demonstrated by TRAP staining, and also suppressed bone resorption and F-actin ring formation in a dose-dependent manner. The expression levels of genes related to osteoclast differentiation, including NFATc1, ACP5, Ctsk, and DCSTAMP, were downregulated by WSE. Oral administration of WSE improved bone density and structural parameters in ovariectomized mice. Dicaffeoylquinic acids (DCQAs) and saponins were detected in WSE, with 3,4-DCQA, 3,5-DCQA, and 4,5-DCQA being isolated and identified. All tested DCQAs, including the aforementioned types, inhibited osteoclast differentiation, bone resorption, and the expression of osteoclast-related genes. Furthermore, WSE and DCQAs reduced ROS production mediated by RANKL. These results indicate the potential of WSE and its components, DCQAs, as preventive or therapeutic agents against osteoporosis and related conditions.


Asunto(s)
Enfermedades Óseas Metabólicas , Resorción Ósea , Osteoporosis , Femenino , Animales , Ratones , Osteoclastos , Resorción Ósea/tratamiento farmacológico , Enfermedades Óseas Metabólicas/metabolismo , Osteoporosis/tratamiento farmacológico , Ligando RANK/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Diferenciación Celular , Osteogénesis
12.
Sci Rep ; 13(1): 22370, 2023 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-38102169

RESUMEN

During the COVID-19 pandemic, the world population faced various mental health challenges, highlighting a need for new community-based psychosocial interventions. This study aimed to investigate the effectiveness and feasibility of Nature-Based Therapy (NBT) for the community experiencing psychological distress during the pandemic. A multi-site trial comparing NBT and control groups was conducted in Korea with 291 participants exhibiting mild to severe depression or anxiety. A total of 192 participated in 30 sessions of therapeutic gardening, while 99 remained in the control group. Psychological distress and well-being were assessed using seven measures of depression, anxiety, daily activity, life satisfaction, mindfulness, stress, and loneliness. The effect sizes (Cohen's d) of NBT compared to the control group were medium to large: depression (0.583), anxiety (0.728), daily activity (1.002), life satisfaction (0.786), mindfulness (0.645), stress (0.903), and loneliness (0.695). Multilevel analysis revealed significant Time × Group interaction effects for all measures. Pearson correlation (r = - 0.28 to 0.71) showed that changes in all variables correlated significantly with each other, with small to large effect sizes. Therapeutic alliance at post-test positively moderated the intervention effects on the outcomes. We concluded that NBT is a promising psychosocial intervention for treating psychological distress for community dwellers.


Asunto(s)
COVID-19 , Distrés Psicológico , Humanos , Ansiedad/terapia , COVID-19/psicología , Atención Plena , Pandemias , Estrés Psicológico/terapia , Estrés Psicológico/psicología
13.
Biol Proced Online ; 25(1): 31, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036976

RESUMEN

BACKGROUND: Renal cancer therapies are challenging owing to the extensive spreading of this cancer to other organs and its ability to pose resistance to current medications. Therefore, drugs targeting novel targets are urgently required to overcome these challenges. The cholesterol side-chain cleavage enzyme (CYP11A1) is closely associated with steroidogenesis, and its downregulation is linked to adrenal dysfunction and several types of carcinoma. We previously found that overexpression of CYP11A1 inhibited epithelial-mesenchymal transition and induced G2/M arrest in the kidney cancer Caki-1 cell line. In this context, natural compounds that exhibit potent CYP11A1 stimulation activity can be promising therpaeutic agents for kidney cancer. METHODS: We screened a panel of 1374 natural compounds in a wound-healing assay using CYP11A1-transfected Caki-1 cells. Of these, 167 promising biologically active compounds that inhibited cancer cell migration by more than 75% were selected, and their half-maximal inhibitory concentrations (IC50) were determined. The IC50 of 159 compounds was determined and 38 compounds with IC50 values less than 50 µM were selected for further analysis. Steroid hormones (cholesterol and pregnenolone) levels in cells treated with the selected compounds were quantitated using LC-MS/MS to determine their effect on CYP11A1 activity. Western blotting for CYP11A1, autophagy signaling proteins, and ferroptosis regulators were performed to ivestigate the mechanisms underlying the action of the selected compounds. RESULTS: We screened five promising natural lead compounds that inhibited cancer cell proliferation after three screening steps. The IC50 of these compounds was determined to be between 5.9 and 14.6 µM. These candidate compounds increased the expression of CYP11A1 and suppressed cholesterol levels while increasing pregnenolone levels, which is consistent with the activation of CYP11A1. Our results showed that CYP11A1 activation inhibited the migration of cancer cells, promoted ferroptosis, and triggered autophagy signaling. CONCLUSIONS: This study indicates that the CYP11A1-overexpressing Caki-1 cell line is useful for screening drugs against kidney cancer. The two selected compounds could be utilized as lead compounds for anticancer drug discovery, and specifically for the development of antirenal cancer medication.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38019055

RESUMEN

A defect-passivated photosensor based on cesium lead bromide (CsPbBr3) perovskite quantum dots (QD) was fabricated using parylene films, and the photosensor was applied for the microbial detection. The CsPbBr3 perovskite QDs were synthesized to be homogeneous in size under thermodynamic control, and the perovskite QD-based photosensor was fabricated using MoS2 flakes as the electron transfer layer. In this work, a parylene film with functional groups was deposited on a photosensor for physical protection (waterproof) and defect (halide vacancy) passivation of the perovskite QD. As the first effect of the parylene film, the physical protection of the perovskite QD from water was estimated by comparing the photosensor performance after incubation in water. As the second effect of the parylene, the interaction between the functional groups of the parylene film and the halide vacancies of the perovskite QDs was investigated through the bandgap, crystal structure, and trap-state density analysis. Additionally, density functional theory analysis on Mulliken charges, lattice parameters, and Gibbs free energy demonstrated the effect of the defect passivation by parylene films. Finally, the parylene-passivated QD-based photosensor was applied to the detection of two kinds of food-poisoning and gastroduodenal disease bacteria (Listeria monocytogenes and Helicobacter pylori).

15.
Biosens Bioelectron ; 242: 115739, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37826880

RESUMEN

Wearable devices that can mechanically conform to human skin are a necessity for reliable monitoring and decoding of biomechanical activities through skin. Most inorganic piezoelectrics, however, lack deformability and damage tolerance, impeding stable motion monitoring. Here, we present an air-permeable fabric-based ZnO nanogenerator with mechanical adaptivity to diverse deformations for wearable piezoelectric sensors, collecting biomechanical health data. We fabricate ZnO nanorods incorporated throughout the entire nylon fabric, with a strategically positioned neutral mechanical plane, for bending-sensitive electronics (2.59 µA mm). Its hierarchically interlocked geometry also permits sensitive tactile sensing (0.15 nA kPa-1). Various physiological information about activities, including pulse beating, breathing, saliva swallowing, and coughing, is attained using skin-mounted sensors. Further, the pyroelectric sensing capability of a mask-attached device is demonstrated by identifying specific respiratory patterns. Our wearable healthcare sensors hold great promise for real-time monitoring of health-related vital signs, informing individuals' health status without disrupting their daily lives.


Asunto(s)
Técnicas Biosensibles , Dispositivos Electrónicos Vestibles , Óxido de Zinc , Humanos , Piel , Movimiento (Física)
16.
Front Nephrol ; 3: 1236177, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37675361

RESUMEN

Background: There are insufficient studies on the effect of dietary salt intake on cardiovascular (CV) outcomes in chronic kidney disease (CKD) patients, and there is no consensus on the sodium (Na) intake level that increases the risk of CV disease in CKD patients. Therefore, we investigated the association between dietary salt intake and CV outcomes in CKD patients. Methods: In the Korean cohort study for Outcome in patients with CKD (KNOW-CKD), 1,937 patients were eligible for the study, and their dietary Na intake was estimated using measured 24h urinary Na excretion. The primary outcome was a composite of CV events and/or all-cause death. The secondary outcome was a major adverse cardiac event (MACE). Results: Among 1,937 subjects, there were 205 (10.5%) events for the composite outcome and 110 (5.6%) events for MACE. Compared to the reference group (urinary Na excretion< 2.0g/day), the group with the highest measured 24h urinary Na excretion (urinary Na excretion ≥ 8.0g/day) was associated with increased risk of both the composite outcome (hazard ratio 3.29 [95% confidence interval 1.00-10.81]; P = 0.049) and MACE (hazard ratio 6.28 [95% confidence interval 1.45-27.20]; P = 0.013) in a cause-specific hazard model. Subgroup analysis also showed a pronounced association between dietary salt intake and the composite outcome in subgroups of patients with abdominal obesity, female, lower estimated glomerular filtration rate (< 60 ml/min per 1.73m2), no overt proteinuria, or a lower urinary potassium-to-creatinine ratio (< 46 mmol/g). Conclusion: A high-salt diet is associated with CV outcomes in non-dialysis CKD patients.

17.
ACS Appl Bio Mater ; 6(9): 3726-3738, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37647153

RESUMEN

In this study, the influence of microenvironments on antibody production of hybridoma cells was analyzed using six types of functionalized parylene films, parylene-N and parylene-C (before and after UV radiation), parylene-AM, and parylene-H, and using polystyrene as a negative control. Hybridoma cells were cultured on modified parylene films that produced a monoclonal antibody against the well-known fungal toxin ochratoxin-A. Surface properties were analyzed for each parylene film, such as roughness, chemical functional groups, and hydrophilicity. The proliferation rate of the hybridoma cells was observed for each parylene film by counting the number of adherent cells, and the total amount of produced antibodies from different parylene films was estimated using indirect ELISA. In comparison with the polystyrene, the antibody-production by parylene-H and parylene-AM was estimated to be observed to be as high as 210-244% after the culture of 24 h. These results indicate that the chemical functional groups of the culture plate could influence antibody production. To analyze the influence of the microenvironments of the modified parylene films, we performed cell cycle analysis to estimate the ratio of the G0/G1, S, and G2/M phases of the hybridoma cells on each parylene film. From the normalized proportion of phases of the cell cycle, the difference in antibody production from different surfaces was considered to result from the difference in the proliferation rate of hybridoma cells, which occurred from the different physical and chemical properties of the parylene films. Finally, protein expression was analyzed using an mRNA array to determine the effect of parylene films on protein expression in hybridoma cells. The expression of three antibody production-related genes (CD40, Sox4, and RelB) was analyzed in hybridoma cells cultured on modified parylene films.


Asunto(s)
Formación de Anticuerpos , Poliestirenos , Hibridomas , Anticuerpos Monoclonales
18.
Biosens Bioelectron ; 238: 115598, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37597282

RESUMEN

The use of phages-a natural predator of bacteria-has emerged as a therapeutic strategy for treating multidrug-resistant bacterial infections; thus, the isolation and detection of phages from the environment is crucial for advancing phage therapy. Herein, for the first time, we propose a nanoplasmonic-based biodetection platform for phages that utilizes bacterial outer membranes (OMs) as a biorecognition element. Conventional biosensors based on phage-bacteria interactions encounter multiple challenges due to the bacteriolytic phages and potentially toxic bacteria, resulting in instability and risk in the measurement. Therefore, instead of whole living bacteria, we employ a safe biochemical OMs fraction presenting phage-specific receptors, allowing the robust and reliable phage detection. In addition, the biochip is constructed on bimetallic nanoplasmonic islands through solid-state dewetting for synergy between Au and Ag, whereby sensitive detection of phage-OMs interactions is achieved by monitoring the absorption peak shift. For high detection performance, the nanoplasmonic chip is optimized by systematically investigating the morphological features, e.g., size and packing density of the nanoislands. Using our optimized device, phages are detected with high sensitivity (≥∼104 plaques), specificity (little cross-reactivity), and affinity (stronger binding to the host OMs than anti-bacterial antibodies), further exhibiting the cell-killing activities.


Asunto(s)
Bacteriófagos , Técnicas Biosensibles , Membrana Externa Bacteriana , Anticuerpos Antibacterianos , Apoptosis
19.
Drug Test Anal ; 15(11-12): 1454-1467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37515313

RESUMEN

Thymosin ß4 (Tß4) was reported to exert various beneficial bioactivities such as tissue repair, anti-inflammation, and reduced scar formation, and it is listed on the prohibited substances in sports by the World Anti-Doping Agency. However, no metabolism studies of Tß4 were reported yet. Previously, our lab reported in in vitro experiment that a total of 13 metabolites were found by using multiple enzymes, and six metabolites (Ac-Tß31-43 , Ac-Tß17-43 , Ac-Tß1-11 , Ac-Tß1-14 , Ac-Tß1-15 , and Ac-Tß1-17 ) were confirmed by comparing with the synthetic standards. This study was aimed at identifying new metabolites of Tß4 leucine aminopeptidase (LAP), human kidney microsomes (HKM), cultured huvec cells, and rats after administration of Tß4 protein to develop biomarkers for detecting doping drugs in sports. A method for detecting and quantifying Ac-Tß1-14 was developed and validated using Q-Exactive orbitrap mass spectrometry. The limit of detection (LOD) and limit of quantification (LOQ) of the Ac-Tß1-14 were 0.19 and 0.58 ng/mL, respectively, and showed a good linearity (r2 = 0.9998). As a result, among the six metabolites above, Ac-Tß1-14 , as a common metabolite, was found in LAP, HKM, huvec cells exposed to Tß4, and the urine of rats intraperitoneally treated with 20-mg/kg Tß4. And the metabolite Ac-Tß1-14 was quantitatively determined by 48 h in rats, with the highest concentration occurring between 0 and 6 h. Ac-Tß1-14 was not detected in non-treated control groups, including human blank urine. These results suggest that Ac-Tß1-14 in urine is a potential biomarker for screening the parent Tß4 in doping tests.


Asunto(s)
Líquidos Corporales , Doping en los Deportes , Timosina , Ratas , Humanos , Animales , Riñón , Timosina/metabolismo , Timosina/uso terapéutico , Líquidos Corporales/metabolismo
20.
Small ; 19(41): e2303640, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37287400

RESUMEN

In reticular chemistry, topology is a powerful concept for defining the structures of covalent organic frameworks (COFs). However, due to the lack of diversity in the symmetry and reaction stoichiometry of the monomers, only 5% of the two-dimensional topologies have been reported to be COFs. To overcome the limitations of COF connectivity and pursue novel topologies in COF structures, two aminal-linked COFs, KUF-2 and KUF-3, are prepared, with dumbbell-shaped secondary building units. Linear dialdehydes and piperazine are condensed at a ratio of 1:2 to construct an aminal linkage, leading to unreported hxl-a (KUF-2) and quasi-hcb (KUF-3) structures. Notably, KUF-3 displays top-tier C2 H6 /C2 H4 selectivity and C2 H6 uptake at 298 K, outperforming most porous organic materials. The intrinsic aromatic ring-rich and Lewis basic pore environments, and appropriate pore widths enable the selective adsorption of C2 H6 , as confirmed by Grand Canonical Monte Carlo simulations. Dynamic breakthrough curves revealed that C2 H6 can be selectively separated from a gas mixture of C2 H6 and C2 H4 . This study suggests that topology-based design of aminal-COFs is an effective strategy for expanding the field of reticular chemistry and provides the facile integration of strong Lewis basic sites for selective C2 H6 /C2 H4 separation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...