Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37630941

RESUMEN

In this study, various diffusers are applied to highly efficient ultra-thin emission layer (EML) structure-based blue phosphorescent organic light-emitting diodes (PHOLEDs) to improve the electroluminescence (EL) characteristics and viewing angle. To achieve highly efficient blue PHOLEDs, the EL characteristics of ultra-thin EML PHOLEDs with the various diffusers having different structures of pattern-shape (hemisphere/sphere), size (4~75 µm), distribution (surface/embedded), and packing (close-packed/random) were systematically analyzed. The diffusers showed different enhancements in the overall EL characteristics of efficiencies, viewing angle, and others. The EL characteristics showed apparent dependency on their structure. The external quantum efficiency (EQE) was enhanced mainly by following the orders of pattern, size, and shape. Following the pattern size, the EQE enhancement gradually increased; the largest-sized diffuser with a 75 µm closed-packed hemisphere (diffuser-1) showed a 1.47-fold EQE improvement, which was the highest. Meanwhile, the diffuser with a ~7 µm random embedded sphere with a low density (diffuser 5) showed the lowest 1.02-fold-improved EQE. The reference device with ultra-thin EML structure-based blue PHOLEDs showed a maximum EQE of 16.6%, and the device with diffuser 1 achieved a maximum EQE of 24.3% with a 5.1% wider viewing angle compared to the reference device without a diffuser. For the in-depth analysis, the viewing angle profile of the ultra-thin EML PHOLED device and fluorescent green OLEDs were compared. As a result, the efficiency enhancement characteristics of the diffusers show a difference in the viewing angle profile. Finally, the application of the diffuser successfully demonstrated that the EL efficiency and viewing angle could be selectively improved. Additionally, we found that it was possible to realize a wide viewing angle and achieve considerable EQE enhancement by further investigations using high-density and large-sized embedded structures of light-extraction film.

2.
Nanomaterials (Basel) ; 12(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35564139

RESUMEN

In this study, we fabricated a random nanostructure (RNS) external light extraction composite layer containing high-refractive-index nanoparticles through a simple and inexpensive solution process and a low-temperature mask-free process. We focused on varying the shape and density of the RNSs and adjusted the concentration of the high-refractive-index nanoparticles to control the optical properties. The RNSs fabricated using a low-temperature mask-free process can use the distance between the nanostructures and various forms to control the diffraction and scattering effects in the visible light wavelength range. Consequently, our film exhibited a direct transmittance of ~85% at a wavelength of 550 nm. Furthermore, when the RNSs' composite film, manufactured using the low-temperature mask-free process, was applied to organic light-emitting diodes (OLEDs), it exhibited an external quantum efficiency improvement of 32.2% compared with the OLEDs without the RNSs. Therefore, the randomly distributed high-refractive-index nanoparticles on the polymer film can reduce the waveguide mode and total reflection at the substrate/air interface. These films can be used as a scattering layer to reduce the loss of the OLED substrate mode.

3.
Nanomaterials (Basel) ; 12(8)2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35457971

RESUMEN

In this study, an external light extraction layer with a micro-nano hybrid structure was applied to improve the external light extraction efficiency of organic light-emitting diodes (OLEDs). A reactive ion-etching (RIE) process, using O2 and CHF3 plasma, was performed on the surface of the micro-scale pattern to form micro-nano hybrid structures. According to the results of this study, the nanostructures formed by the treatment of O2 and CHF3 were different, and the efficiency according to the structures was analyzed experimentally and theoretically. As a result, the OLED, to which the micro-nano hybrid structure, manufactured through a simple process, is applied, improved the external light extraction efficiency by up to 38%, and an extended viewing angle profile was obtained. Additionally, an effective method for enhancing the out-coupling efficiency of OLEDs was presented by optimizing the micro-nano hybrid structure according to process conditions.

4.
Sci Rep ; 11(1): 8436, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875674

RESUMEN

In this study, we report highly efficient green phosphorescent organic light-emitting diodes (OLEDs) with ultra-thin emission layers (EMLs). We use tris[2-phenylpyridinato-C2,N]iridium(III) (Ir(ppy)3), a green phosphorescent dopant, for creating the OLEDs. Under systematic analysis, the peak external quantum efficiency (EQE) of an optimized device based on the ultra-thin EML structure is found to be approximately 24%. This result is highest EQE among ultra-thin EML OLEDs and comparable to the highest efficiency achieved by OLEDs using Ir(ppy)3 that are fabricated via conventional doping methods. Moreover, this result shows that OLEDs with ultra-thin EML structures can achieve ultra-high efficiency.

5.
J Nanosci Nanotechnol ; 21(8): 4179-4184, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714300

RESUMEN

In the research of organic light-emitting diodes (OLEDs), the OLEDs that are fabricated via conventional doping methods have complicated structures and fabrication processes. To overcome these limitations, the ultra-thin emission layer (EML) method, which adopts a simple structure has been effectively used in the research of OLEDs. However, studies on white color OLEDs (WOLEDs) fabricated using the ultra-thin EML method are scarce. In this paper, we report the results of color tuning for the realization of WOLEDs based on an ultra-thin EML structure. The WOLEDs were fabricated and evaluated based on a two-color dopant system (sky-blue dopant and yellow dopant). The fabricated WOLEDs exhibited color coordinates of the International Commission on Illumination (CIE) 1931 from (0.287, 0.436) to (0.486, 0.483) according to the thickness ratio of the two dopants. This result suggests that the WOLEDs color tuned with multi-color dopants can be fabricated based on the ultra-thin EML method, and the development of WOLEDs with high efficiency and stability can be attained in the future.

6.
J Nanosci Nanotechnol ; 21(8): 4208-4211, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-33714304

RESUMEN

In this study, we report the effects of the substrate rotational speed on the morphological characteristics of lithium fluoride (LiF) during thermal evaporation. LiF is used as a typical material in a vacuum-level shift-based electron injection layer and can improve both the charge injection and light emission properties when inserted into the electrode/organic material interface of organic light-emitting diodes (OLEDs). In general OLED research, rotary evaporation is widely used to ensure uniformity. However, there are few reports regarding the effects of this rotary evaporation method on the morphological characteristics of the thin films. Therefore, in this study, we analyzed the effects of rotary variations on the morphological and electron injection characteristics during deposition. The root mean square roughness of the LiF thin film deposited on Alq3 changed by up to 12.3%. Additionally, the driving voltage of the electron-only device showed a difference of 2.3 V at maximum and a change in the slope of the ohmic region was demonstrated. The morphological change in the LiF thin film based on the rotational speed of the substrate had a significant influence on the reaction at the electrode/organic material interface.

7.
Sci Rep ; 11(1): 3430, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33564021

RESUMEN

The viewing angle characteristics and light extraction efficiency of organic light-emitting diodes (OLEDs) with a micro-cavity structure were enhanced. This was accomplished by inserting a diffusion layer composed of nano-sized structures of a transparent polymer poly(methyl methacrylate) (PMMA) combined with a zinc oxide (ZnO) semi-planarization layer with a high refractive index (n = 2.1) into the devices. The PMMA nanostructures were fabricated by employing a reactive ion etching (RIE) process. The height and density of the PMMA nanostructures were controlled by varying the speed at which the PMMA was spin-coated onto the substrate. The insertion of the diffusion layer into the micro-cavity OLEDs (MC-OLEDs) improved the external quantum efficiency (EQE) by as much as 17% when compared to that of a MC-OLED without a diffusion layer. Furthermore, adjustment of the viewing angle from 0° to 60° halved the peak shift distance of the electroluminescence (EL) spectra from 42 to 20 nm. Additionally, changing the viewing angle from 0° to 60° changed the color coordinate movement distance of the MC-OLED with the diffusion layer to 0.078, less than half of the distance of the MC-OLED without the diffusion layer (0.165).

8.
J Nanosci Nanotechnol ; 20(11): 6688-6691, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32604498

RESUMEN

In this work, we report the effect of the rotation speed of the deposited substrate on the electroluminescence (EL) efficiency of the organic light-emitting diode (OLED). Because it has been reported that the deposition angle velocity affects the growth of an organic thin film, it is expected that the OLED EL characteristics must be affected depending on the substrate rotation velocity. Thus, in this work, the substrate rotation velocity was altered during the deposition of each organic material. The OLED devices fabricated with different depositing substrate rotation speeds showed different EL characteristics. The film thickness of the organic materials with different substrate rotation speed was carefully controlled. It was confirmed to be the same with a surface profiler and was further field enhanced using a scanning electron microscope. The difference in peak EQE was observed to be greater than 1.5 times. Based on this result, it is possible to conclude that the speed of the rotational deposition system should affect the film characteristics and therefore should be considered an important parameter.

9.
J Exerc Rehabil ; 10(5): 306-12, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25426469

RESUMEN

The purpose of this study was to investigate the effect of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers. The linear resistance training model (6 days/week) and nonlinear underwater training (4 days/week) were applied to 12 finswimmers (age, 16.08± 1.44 yr; career, 3.78± 1.90 yr) for 12 weeks. Body composition measures included weight, body mass index (BMI), percent fat, and fat-free mass. Physical fitness measures included trunk flexion forward, trunk extension backward, sargent jump, 1-repetition-maximum (1 RM) squat, 1 RM dead lift, knee extension, knee flexion, trunk extension, trunk flexion, and competition times. Body composition and physical fitness were improved after the 12-week periodic training program. Weight, BMI, and percent fat were significantly decreased, and trunk flexion forward, trunk extension backward, sargent jump, 1 RM squat, 1 RM dead lift, and knee extension (right) were significantly increased. The 50- and 100-m times significantly decreased in all 12 athletes. After 12 weeks of training, all finswimmers who participated in this study improved their times in a public competition. These data indicate that combined linear and nonlinear periodic training enhanced the physical fitness and competition times in finswimmers.

10.
PLoS One ; 8(10): e77219, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124608

RESUMEN

Oncogenic mutations in gastrointestinal stromal tumors (GISTs) predict prognosis and therapeutic responses to imatinib. In wild-type GISTs, the tumor-initiating events are still unknown, and wild-type GISTs are resistant to imatinib therapy. We performed an association study between copy number alterations (CNAs) identified from array CGH and gene expression analyses results for four wild-type GISTs and an imatinib-resistant PDGFRA D842V mutant GIST, and compared the results to those obtained from 27 GISTs with KIT mutations. All wild-type GISTs had multiple CNAs, and CNAs in 1p and 22q that harbor the SDHB and GSTT1 genes, respectively, correlated well with expression levels of these genes. mRNA expression levels of all SDH gene subunits were significantly lower (P≤0.041), whereas mRNA expression levels of VEGF (P=0.025), IGF1R (P=0.026), and ZNFs (P<0.05) were significantly higher in GISTs with wild-type/PDGFRA D842V mutations than GISTs with KIT mutations. qRT-PCR validation of the GSTT1 results in this cohort and 11 additional malignant GISTs showed a significant increase in the frequency of GSTT1 CN gain and increased mRNA expression of GSTT1 in wild-type/PDGFRA D842V GISTs than KIT-mutant GISTs (P=0.033). Surprisingly, all four malignant GISTs with KIT exon 11 deletion mutations with primary resistance to imatinib had an increased GSTT1 CN and mRNA expression level of GSTT1. Increased mRNA expression of GSTT1 and ZNF could be predictors of a poor response to imatinib. Our integrative approach reveals that for patients with wild-type (or imatinib-resistant) GISTs, attempts to target VEGFRs and IGF1R may be reasonable options.


Asunto(s)
Neoplasias Gastrointestinales/tratamiento farmacológico , Neoplasias Gastrointestinales/genética , Tumores del Estroma Gastrointestinal/tratamiento farmacológico , Tumores del Estroma Gastrointestinal/genética , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Glutatión Transferasa/genética , Dedos de Zinc/genética , Adulto , Anciano , Anciano de 80 o más Años , Cromosomas Humanos Par 1 , Análisis por Conglomerados , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Femenino , Perfilación de la Expresión Génica , Humanos , Pérdida de Heterocigocidad , Masculino , Repeticiones de Microsatélite , Persona de Mediana Edad , Pronóstico , ARN Mensajero/genética
11.
PLoS One ; 8(7): e69752, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23922791

RESUMEN

Dermatofibrosarcoma protuberans (DFSP) is a very rare soft tissue sarcoma. DFSP often reveals a specific chromosome translocation, t(17;22)(q22;q13), which results in the fusion of collagen 1 alpha 1 (COL1A1) gene and platelet-derived growth factor-B (PDGFB) gene. The COL1A1-PDGFB fusion protein activates the PDGFB receptor and resultant constitutive activation of PDGFR receptor is essential in the pathogenesis of DFSP. Thus, blocking PDGFR receptor activation with imatinib has shown promising activity in the treatment of advanced and metastatic DFSP. Despite the success with targeted agents in cancers, acquired drug resistance eventually occurs. Here, we tried to identify potential drug resistance mechanisms against imatinib in a 46-year old female with DFSP who initially responded well to imatinib but suffered rapid disease progression. We performed whole-genome sequencing of both pre-treatment and post-treatment tumor tissue to identify the mutational events associated with imatinib resistance. No significant copy number alterations, insertion, and deletions were identified during imatinib treatment. Of note, we identified newly emerged 8 non-synonymous somatic mutations of the genes (ACAP2, CARD10, KIAA0556, PAAQR7, PPP1R39, SAFB2, STARD9, and ZFYVE9) in the imatinib-resistant tumor tissue. This study revealed diverse possible candidate mechanisms by which imatinib resistance to PDGFRB inhibition may arise in DFSP, and highlights the usefulness of whole-genome sequencing in identifying drug resistance mechanisms and in pursuing genome-directed, personalized anti-cancer therapy.


Asunto(s)
Benzamidas/uso terapéutico , Dermatofibrosarcoma/genética , Piperazinas/uso terapéutico , Pirimidinas/uso terapéutico , Proteínas Adaptadoras de Señalización CARD/genética , Proteínas Portadoras/genética , Dermatofibrosarcoma/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Femenino , Proteínas Activadoras de GTPasa/genética , Humanos , Mesilato de Imatinib , Técnicas In Vitro , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Persona de Mediana Edad , Proteínas Asociadas a Matriz Nuclear/genética , Receptores de Estrógenos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...