Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(12): e0147423, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966269

RESUMEN

IMPORTANCE: The strategy using structural homology with the help of structure prediction by AlphaFold was very successful in finding potential targets for the frhAGB-encoded hydrogenase of Thermococcus onnurineus NA1. The finding that the hydrogenase can interact with FdhB to reduce the cofactor NAD(P)+ is significant in that the enzyme can function to supply reducing equivalents, just as F420-reducing hydrogenases in methanogens use coenzyme F420 as an electron carrier. Additionally, it was identified that T. onnurineus NA1 could produce formate from H2 and CO2 by the concerted action of frhAGB-encoded hydrogenase and formate dehydrogenase Fdh3.


Asunto(s)
Hidrogenasas , Thermococcus , Thermococcus/genética , Hidrogenasas/genética , Formiato Deshidrogenasas/genética , Dióxido de Carbono , NADP
2.
Front Microbiol ; 14: 1279544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37933250

RESUMEN

Acetogenic bacteria can utilize C1 compounds, such as carbon monoxide (CO), formate, and methanol, via the Wood-Ljungdahl pathway (WLP) to produce biofuels and biochemicals. Two novel acetogenic bacteria of the family Eubacteriaceae ES2 and ES3 were isolated from Eulsukdo, a delta island in South Korea. We conducted whole genome sequencing of the ES strains and comparative genome analysis on the core clusters of WLP with Acetobacterium woodii DSM1030T and Eubacterium limosum ATCC8486T. The methyl-branch cluster included a formate transporter and duplicates or triplicates copies of the fhs gene, which encodes formyl-tetrahydrofolate synthetase. The formate dehydrogenase cluster did not include the hydrogenase gene, which might be replaced by a functional complex with a separate electron bifurcating hydrogenase (HytABCDE). Additionally, duplicated copies of the acsB gene, encoding acetyl-CoA synthase, are located within or close to the carbonyl-branch cluster. The serum bottle culture showed that ES strains can utilize a diverse range of C1 compounds, including CO, formate, and methanol, as well as CO2. Notably, ES2 exhibited remarkable resistance to high concentrations of C1 substrates, such as 100% CO (200 kPa), 700 mM formate, and 500 mM methanol. Moreover, ES2 demonstrated remarkable growth rates under 50% CO (0.45 h-1) and 200 mM formate (0.34 h-1). These growth rates are comparable to or surpassing those previously reported in other acetogenic bacteria. Our study introduces novel acetogenic ES strains and describes their genetic and physiological characteristics, which can be utilized in C1-based biomanufacturing.

3.
Nucleic Acids Res ; 51(18): 10026-10040, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650645

RESUMEN

Thermococcus onnurineus NA1, a hyperthermophilic carboxydotrophic archaeon, produces H2 through CO oxidation catalyzed by proteins encoded in a carbon monoxide dehydrogenase (CODH) gene cluster. TON_1525 with a DNA-binding helix-turn-helix (HTH) motif is a putative repressor regulating the transcriptional expression of the codh gene cluster. The T55I mutation in TON_1525 led to enhanced H2 production accompanied by the increased expression of genes in the codh cluster. Here, TON_1525 was demonstrated to be a dimer. Monomeric TON_1525 adopts a novel 'eighth note' symbol-like fold (referred to as 'eighth note' fold regulator, EnfR), and the dimerization mode of EnfR is unique in that it has no resemblance to structures in the Protein Data Bank. According to footprinting and gel shift assays, dimeric EnfR binds to a 36-bp pseudo-palindromic inverted repeat in the promoter region of the codh gene cluster, which is supported by an in silico EnfR/DNA complex model and mutational studies revealing the implication of N-terminal loops as well as HTH motifs in DNA recognition. The DNA-binding affinity of the T55I mutant was lowered by ∼15-fold, for which the conformational change of N-terminal loops is responsible. In addition, transcriptome analysis suggested that EnfR could regulate diverse metabolic processes besides H2 production.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37022754

RESUMEN

A strictly anaerobic hyperthermophilic archaeon, designated strain IOH2T, was isolated from a deep-sea hydrothermal vent (Onnuri vent field) area on the Central Indian Ocean Ridge. Strain IOH2T showed high 16S rRNA gene sequence similarity to Thermococcus sibiricus MM 739T (99.42 %), Thermococcus alcaliphilus DSM 10322T (99.28 %), Thermococcus aegaeus P5T (99.21 %), Thermococcus litoralis DSM 5473T (99.13 %), 'Thermococcus bergensis' T7324T (99.13 %), Thermococcus aggregans TYT (98.92 %) and Thermococcus prieurii Bio-pl-0405IT2T (98.01 %), with all other strains showing lower than 98 % similarity. The average nucleotide identity and in silico DNA-DNA hybridization values were highest between strain IOH2T and T. sibiricus MM 739T (79.33 and 15.00 %, respectively); these values are much lower than the species delineation cut-offs. Cells of strain IOH2T were coccoid, 1.0-1.2 µm in diameter and had no flagella. Growth ranges were 60-85 °C (optimum at 80 °C), pH 4.5-8.5 (optimum at pH 6.3) and 2.0-6.0 % (optimum at 4.0 %) NaCl. Growth of strain IOH2T was enhanced by starch, glucose, maltodextrin and pyruvate as a carbon source, and elemental sulphur as an electron acceptor. Through genome analysis of strain IOH2T, arginine biosynthesis related genes were predicted, and growth of strain IOH2T without arginine was confirmed. The genome of strain IOH2T was assembled as a circular chromosome of 1 946 249 bp and predicted 2096 genes. The DNA G+C content was 39.44 mol%. Based on the results of physiological and phylogenetic analyses, Thermococcus argininiproducens sp. nov. is proposed with type strain IOH2T (=MCCC 4K00089T=KCTC 25190T).


Asunto(s)
Thermococcus , Thermococcus/genética , Agua de Mar , Composición de Base , Filogenia , ARN Ribosómico 16S/genética , Océano Índico , ADN Bacteriano/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana
5.
Front Microbiol ; 13: 844735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369452

RESUMEN

The genome of the hyperthermophilic archaeon Thermococcus onnurineus NA1 contains three copies of the formate dehydrogenase (FDH) gene, fdh1, fdh2, and fdh3. Previously, we reported that fdh2, clustered with genes encoding the multimeric membrane-bound hydrogenase and cation/proton antiporter, was essential for formate-dependent growth with H2 production. However, the functionality of the other two FDH-coding genes has not yet been elucidated. Herein, we purified and characterized cytoplasmic Fdh3 to understand its functionality. The purified Fdh3 was identified to be composed of a tungsten-containing catalytic subunit (Fdh3A), an NAD(P)-binding protein (Fdh3B), and two Fe-S proteins (Fdh3G1 and Fdh3G2). Fdh3 oxidized formate with specific activities of 241.7 U/mg and 77.4 U/mg using methyl viologen and NADP+ as electron acceptors, respectively. While most FDHs exhibited NAD+-dependent formate oxidation activity, the Fdh3 of T. onnurineus NA1 showed a strong preference for NADP+ over NAD+ as a cofactor. The catalytic efficiency (k cat /K m) of Fdh3 for NADP+ was measured to be 5,281 mM-1 s-1, which is the highest among NADP-dependent FDHs known to date. Structural modeling suggested that Arg204 and Arg205 of Fdh3B may contribute to the stabilization of the 2'-phosphate of NADP(H). Fdh3 could also use ferredoxin as an electron acceptor to oxidize formate with a specific activity of 0.83 U/mg. Furthermore, Fdh3 showed CO2 reduction activity using reduced ferredoxin or NADPH as an electron donor with a specific activity of 0.73 U/mg and 1.0 U/mg, respectively. These results suggest a functional role of Fdh3 in disposing of reducing equivalents by mediating electron transfer between formate and NAD(P)H or ferredoxin.

7.
J Microbiol ; 58(4): 260-267, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32239454

RESUMEN

A strictly anaerobic, dissimilatory Fe(III)-reducing hyperthermophilic archaeon, designated as strain IOH1T, was isolated from a new deep-sea hydrothermal vent (Onnuri Vent Field) area in the Central Indian Ocean ridge. Strain IOH1T showed > 99% 16S rRNA gene sequence similarity with Thermococcus celericrescens TS2T (99.4%) and T. siculi DSM 12349T (99.2%). Additional three species T. barossii SHCK-94T (99.0%), T. celer Vu13T (98.8%), and T. piezophilus (98.6%) showed > 98.6% of 16S rRNA gene sequence similarity, however, the maximum OrthoANI value is 89.8% for the genome of T. celericrescens TS2T. Strain IOH1T cells are coccoid, 1.2-1.8 µm in diameter, and motile by flagella. Growth was at 70-82°C (optimum 80°C), pH 5.4-8.0 (optimum pH 6.0) with 2-4% (optimum 3%) NaCl. Growth of strain IOH1T was enhanced by starch, pyruvate, D(+)-maltose and maltodextrin as a carbon sources, and elemental sulfur as an electron acceptor; clearly different from those of related species T. celecrescens DSM 17994T and T. siculi DSM 12349T. Strain IOH1T, T. celercrescence DSM 17994T, and T. siculi DSM 12349T reduced soluble Fe(III)-citrate present in the medium, whereas the amount of total cellular proteins increased with the concomitant accumulation of Fe(II). We determined a circular chromosome of 2,234 kb with an extra-chromosomal archaeal plasmid, pTI1, of 7.7 kb and predicted 2,425 genes. The DNA G + C content was 54.9 mol%. Based on physiological properties, phylogenetic, and genome analysis, we proposed that strain IOH1T (= KCTC 15844T = JCM 39077T) is assigned to a new species in the genus Thermococcus and named Thermococcus indicus sp. nov.


Asunto(s)
Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Thermococcus/clasificación , Composición de Base , ADN de Archaea/genética , Compuestos Férricos/metabolismo , Océano Índico , ARN Ribosómico 16S/genética , Thermococcus/aislamiento & purificación
8.
Bioresour Technol ; 305: 123067, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32120234

RESUMEN

To develop a thermophilic cell factory system that uses CO gas, we attempted to engineer a hyperthermophilic carboxydotrophic hydrogenic archaeon Thermococcus onnurineus NA1 to be capable of producing thermophilic enzymes along with hydrogen (H2). The mutant strains 156T-AM and 156T-POL were constructed to have another copy of a gene encoding α-amylase or DNA polymerase, respectively, and exhibited growth rates and H2 production rates distinct from those of the parental strain, 156T, in gas fermentation using 100% CO or coal-gasified syngas. Purified α-amylase displayed starch-hydrolyzing activity, and whole-cell extracts of 156T-AM showed saccharifying activity for potato peel waste. PCR amplification was used to demonstrate that purified DNA polymerase was free from bacterial DNA contamination, in contrast to commercial bacteria-made enzymes. This study demonstrated that this archaeal strain could coproduce enzymes and H2 using CO-containing gas, providing a basis for cell factories to upcycle industrial waste gas.

9.
J Microbiol ; 58(4): 252-259, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32103446

RESUMEN

An anaerobic, rod-shaped, mesophilic, chemolithoautotrophic, sulfate-reducing bacterial strain IOR2T was isolated from a newly found deep-sea hydrothermal vent (OVF, Onnuri Vent Field) area in the central Indian Ocean ridge (11°24'88″ S 66°25'42″ E, 2021 m water depth). The 16S rRNA gene sequence analysis revealed that the strain IOR2T was most closely related to Desulfovibrio senegalensis BLaC1T (96.7%). However, it showed low similarity with the members of the family Desulfovibrionaceae, such as Desulfovibrio tunisiensis RB22T (94.0%), D. brasiliensis LVform1T (93.9%), D. halophilus DSM 5663T (93.7%), and Pseudodesulfovibrio aespoeensis Aspo-2T (93.2%). The strain IOR2T could grow at 23-42°C (optimum 37°C), pH 5.0-8.0 (optimum pH 7.0) and with 0.5-6.5% (optimum 3.0%) NaCl. The strain could use lactate, pyruvate, H2, and glycerol as electron donors and sulfate, thiosulfate, and sulfite as electron acceptors. The major fatty acids of the strain IOR2T were iso-C15:0, iso-C17:0, ante-iso-C15:0, and summed feature 9 (C16:0 methyl/iso-C17:1ω9c). Both the strains IOR2T and BLaC1T could grow with CO2 and H2 as the sole sources of carbon and energy, respectively. Genomic evidence for the Wood-Ljungdahl pathway in both the strains reflects chemolithoautotrophic growth. The DNA G + C content of the strain IOR2T and BLaC1T was 58.1-60.5 mol%. Based on the results of the phylogenetic and physiologic studies, Paradesulfovibrio onnuriensis gen. nov., sp. nov. with the type strain IOR2T (= KCTC 15845T = MCCC 1K04559T) was proposed to be a member of the family Desulfovibrionaceae. We have also proposed the reclassification of D. senegalensis as Paradesulfovibrio senegalensis comb. nov.


Asunto(s)
Desulfovibrio/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Desulfovibrio/aislamiento & purificación , Ácidos Grasos/química , Océano Índico , ARN Ribosómico 16S/genética , Sulfatos/metabolismo
10.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31924613

RESUMEN

To date, NAD(P)H, ferredoxin, and coenzyme F420 have been identified as electron donors for thioredoxin reductase (TrxR). In this study, we present a novel electron source for TrxR. In the hyperthermophilic archaeon Thermococcus onnurineus NA1, the frhAGB-encoded hydrogenase, a homolog of the F420-reducing hydrogenase of methanogens, was demonstrated to interact with TrxR in coimmunoprecipitation experiments and in vitro pulldown assays. Electrons derived from H2 oxidation by the frhAGB-encoded hydrogenase were transferred to TrxR and reduced Pdo, a redox partner of TrxR. Interaction and electron transfer were observed between TrxR and the heterodimeric hydrogenase complex (FrhAG) as well as the heterotrimeric complex (FrhAGB). Hydrogen-dependent reduction of TrxR was 7-fold less efficient than when NADPH was the electron donor. This study not only presents a different type of electron donor for TrxR but also reveals new functionality of the frhAGB-encoded hydrogenase utilizing a protein as an electron acceptor.IMPORTANCE This study has importance in that TrxR can use H2 as an electron donor with the aid of the frhAGB-encoded hydrogenase as well as NAD(P)H in T. onnurineus NA1. Further studies are needed to explore the physiological significance of this protein. This study also has importance as a significant step toward understanding the functionality of the frhAGB-encoded hydrogenase in a nonmethanogen; the hydrogenase can transfer electrons derived from oxidation of H2 to a protein target by direct contact without the involvement of an electron carrier, which is distinct from the mechanism of its homologs, F420-reducing hydrogenases of methanogens.


Asunto(s)
Proteínas Arqueales/metabolismo , Electrones , Hidrogenasas/metabolismo , Thermococcus/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transporte de Electrón , Oxidación-Reducción
11.
Biometals ; 32(6): 923-937, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31676935

RESUMEN

A putative copper ion-sensing transcriptional regulator CopR (TON_0836) from Thermococcus onnurineus NA1 was characterized. The CopR protein consists of a winged helix-turn-helix DNA-binding domain in the amino-terminal region and a TRASH domain that is assumed to be involved in metal ion-sensing in the carboxyl-terminal region. The CopR protein was most strongly bound to a region between its own gene promoter and a counter directional promoter region for copper efflux system CopA. When the divalent metals such as nickel, cobalt, copper, and iron were present, the CopR protein was dissociated from the target promoters on electrophoretic mobility shift assay (EMSA). The highest sensible ion is copper which affected protein releasing under 10 µM concentrations. CopR recognizes a significant upstream region of TATA box on CopR own promoter and acts as a transcriptional repressor in an in vitro transcription assay. Through site-directed mutagenesis of the DNA-binding domain, R34M mutant protein completely lost the DNA-binding activity on target promoter. When the conserved cysteine residues in C144XXC147 motif 1 of the TRASH domain were mutated into glycine, the double cysteine residue mutant protein alone lost the copper-binding activity. Therefore, CopR is a copper-sensing transcriptional regulator and acts as a repressor for autoregulation and for a putative copper efflux system CopA of T. onnurineus NA1.


Asunto(s)
Cobre/metabolismo , Regulación de la Expresión Génica Arqueal , Thermococcus/genética , Thermococcus/metabolismo , Factores de Transcripción/metabolismo
12.
J Microbiol ; 57(8): 676-687, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31201724

RESUMEN

Strain IMCC1322 was isolated from a surface water sample from the East Sea of Korea. Based on 16S rRNA analysis, IMCC1322 was found to belong to the OCS28 sub-clade of SAR116. The cells appeared as short vibrioids in logarithmic-phase culture, and elongated spirals during incubation with mitomycin or in aged culture. Growth characteristics of strain IMCC1322 were further evaluated based on genomic information; proteorhodopsin (PR), carbon monoxide dehydrogenase, and dimethylsulfoniopropionate (DMSP)-utilizing enzymes. IMCC1322 PR was characterized as a functional retinylidene protein that acts as a light-driven proton pump in the cytoplasmic membrane. However, the PR-dependent phototrophic potential of strain IMCC1322 was only observed under CO-inhibited and nutrient-limited culture conditions. A DMSP-enhanced growth response was observed in addition to cultures grown on C1 compounds like methanol, formate, and methane sulfonate. Strain IMCC1322 cultivation analysis revealed biogeochemical processes characteristic of the SAR116 group, a dominant member of the microbial community in euphotic regions of the ocean. The polyphasic taxonomy of strain IMCC1322 is given as Candidatus Puniceispirillum marinum, and was confirmed by chemotaxonomic tests, in addition to 16S rRNA phylogeny and cultivation analyses.


Asunto(s)
Alphaproteobacteria , ARN Ribosómico 16S/genética , Rodopsinas Microbianas , Agua de Mar/microbiología , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/crecimiento & desarrollo , Alphaproteobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/genética , República de Corea , Rodopsinas Microbianas/química , Rodopsinas Microbianas/metabolismo , Compuestos de Sulfonio/metabolismo , Secuenciación Completa del Genoma/métodos
13.
3 Biotech ; 9(5): 170, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30997307

RESUMEN

In this study, we developed a rapid and sensitive enzymatic assay for 2,3-butanediol (2,3-BDO) detection. The concentration of 2,3-BDO was determined by measuring the reduction of NADP+ using Clostridium ljungdahlii 2,3-butanediol dehydrogenase (CL-Bdh). The enzymatic assay could detect as low as 0.01 mM of 2,3-BDO, while the high-performance liquid chromatography (HPLC) method required a much higher concentration than 0.15 mM. Gratifyingly, the developed method was 15 times more sensitive than the HPLC method. When the enzymatic assay was applied to high-throughput screening, the enzymatic assay detected 14 positive samples out of 23 tested, as compared to 8 by the HPLC method. These results suggest that the enzymatic assay is an effective screening method for the detection of 2,3-BDO-producing microbes in a microtiter plate-based format.

14.
Appl Microbiol Biotechnol ; 103(8): 3477-3485, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30887173

RESUMEN

The biosynthetic pathway of 2,3-butanediol (2,3-BDO) production from pyruvate under anaerobic conditions includes three enzymes: acetolactate synthase (ALS), acetolactate decarboxylase (ALDC), and acetoin reductase (AR). Recently, in anaerobic hyperthermophilic Pyrococcus furiosus, it has been reported that acetoin, a precursor of 2,3-BDO, is produced from pyruvate by ALS through a temperature-dependent metabolic switch. In this study, we first attempted to produce 2,3-BDO from Thermococcus onnurineus NA1 using a simple biosynthetic pathway by two enzymes (ALS and AR) at a high temperature. Two heterologous genes, acetolactate synthase (alsS) from Pyrococcus sp. NA2 and alcohol dehydrogenase (adh) from T. guaymacensis, were introduced and expressed in T. onnurineus NA1. The mutant strain produced approximately 3.3 mM 2,3-BDO at 80 °C. An acetyl-CoA synthetase IIIα (TON_1001) was further deleted to enhance 2,3-BDO production, and the mutant strain showed a 25% increase in the specific production of 2,3-BDO. Furthermore, when carbon monoxide (CO) gas was added as a reductant, specific production of 2,3-BDO increased by 45%. These results suggest a new biosynthetic pathway for 2,3-BDO and demonstrate the possibility of T. onnurineus NA1 as a platform strain for 2,3-BDO production at high temperatures.


Asunto(s)
Vías Biosintéticas/genética , Butileno Glicoles/metabolismo , Thermococcus/genética , Thermococcus/metabolismo , Anaerobiosis , Proteínas Arqueales/genética , Monóxido de Carbono/química , Calor , Ingeniería Metabólica
15.
Cell Death Differ ; 26(12): 2594-2606, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30903102

RESUMEN

The loss of imprinting of MEST has been linked to certain types of cancer by promoter switching. However, MEST-mediated regulation of tumorigenicity and metastasis are yet to be understood. Herein, we reported that MEST is a key regulator of IL-6/JAK/STAT3/Twist-1 signal pathway-mediated tumor metastasis. Enhanced MEST expression is significantly associated with pathogenesis of breast cancer patients. Also, MEST induces metastatic potential of breast cancer through induction of the EMT-TFs-mediated EMT program. Moreover, MEST leads to Twist-1 induction by STAT3 activation and subsequently enables the induction of activation of the EMT program via the induction of STAT3 nuclear translocation. Furthermore, the c-terminal region of MEST was essential for STAT3 activation via the induction of JAK2/STAT3 complex formation. Finally, MEST is required for metastasis in an experimental metastasis model. These observations suggest that MEST is a promising target for intervention to prevent tumor metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Factor de Transcripción STAT3/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/fisiología , Células Cultivadas , Transición Epitelial-Mesenquimal , Femenino , Humanos , Células MCF-7 , Ratones , Metástasis de la Neoplasia , Proteínas Nucleares/genética , Proteínas/genética , Factor de Transcripción STAT3/genética , Transducción de Señal , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Proteína 1 Relacionada con Twist/genética , Regulación hacia Arriba
16.
Biotechnol Biofuels ; 12: 24, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30774712

RESUMEN

BACKGROUND: The production of biohydrogen (H2) as a promising future fuel in anaerobic hyperthermophiles has attracted great attention because H2 formation is more thermodynamically feasible at elevated temperatures and fewer undesired side products are produced. However, these microbes require anoxic culture conditions for growth and H2 production, thereby necessitating costly and time-consuming physical or chemical methods to remove molecular oxygen (O2). Therefore, the development of an O2-tolerant strain would be useful for industrial applications. RESULTS: In this study, we found that the overexpression of frhAGB-encoding hydrogenase genes in Thermococcus onnurineus NA1, an obligate anaerobic archaeon and robust H2 producer, enhanced O2 tolerance. When the recombinant FO strain was exposed to levels of O2 up to 20% in the headspace of a sealed bottle, it showed significant growth. Whole transcriptome analysis of the FO strain revealed that several genes involved in the stress response such as chaperonin ß subunit, universal stress protein, peroxiredoxin, and alkyl hydroperoxide reductase subunit C, were significantly up-regulated. The O2 tolerance of the FO strain enabled it to grow on formate and produce H2 under oxic conditions, where prior O2-removing steps were omitted, such as the addition of reducing agent Na2S, autoclaving, and inert gas purging. CONCLUSIONS: Via the overexpression of frhAGB genes, the obligate anaerobic archaeon T. onnurineus NA1 gained the ability to overcome the inhibitory effect of O2. This O2-tolerant property of the strain may provide another advantage to this hyperthermophilic archaeon as a platform for biofuel H2 production.

17.
J Microbiol ; 57(2): 138-142, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30706342

RESUMEN

Thermococcus onnurineus NA1, an obligate anaerobic hyperthermophilic archaeon, showed variable oxygen (O2) sensitivity depending on the types of substrate employed as an energy source. Unexpectedly, the culture with yeast extract as a sole energy source showed enhanced growth by 2-fold in the presence of O2. Genome-wide transcriptome analysis revealed the upregulation of several antioxidant-related genes encoding thioredoxin peroxidase (TON_0862), rubrerythrin (TON_0864), rubrerythrin-related protein (TON_0873), NAD(P)H rubredoxin oxidoreductase (TON_0865), or thioredoxin reductase (TON_1603), which can couple the detoxification of reactive oxygen species with the regeneration of NAD(P)+ from NAD(P)H. We present a plausible mechanism by which O2 serves to maintain the intracellular redox balance. This study demonstrates an unusual strategy of an obligate anaerobe underlying O2-mediated growth enhancement despite not having heme-based or cytochrome-type proteins.


Asunto(s)
Oxígeno/metabolismo , Thermococcus/enzimología , Thermococcus/crecimiento & desarrollo , Thermococcus/genética , Antioxidantes , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Citocromos/genética , Citocromos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica Arqueal , Genes Arqueales/genética , Proteínas de Unión al Hemo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Hemeritrina/genética , Hemeritrina/metabolismo , NAD/metabolismo , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , Oxidación-Reducción , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/toxicidad , Rubredoxinas/genética , Rubredoxinas/metabolismo , Thermococcus/metabolismo , Reductasa de Tiorredoxina-Disulfuro/genética , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Transcriptoma , Regulación hacia Arriba
18.
Sci Rep ; 7(1): 6124, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28733620

RESUMEN

Previously, we reported that the hyperthermophilic archaeon Thermococcus onnurineus NA1 could grow on formate and produce H2. Formate conversion to hydrogen was mediated by a formate-hydrogen lyase complex and was indeed a part of chemiosmotic coupling to ATP generation. In this study, we employed an adaptation approach to enhance the cell growth on formate and investigated molecular changes. As serial transfer continued on formate-containing medium at the serum vial, cell growth, H2 production and formate consumption increased remarkably. The 156 times transferred-strain, WTF-156T, was demonstrated to enhance H2 production using formate in a bioreactor. The whole-genome sequencing of the WTF-156T strain revealed eleven mutations. While no mutation was found among the genes encoding formate hydrogen lyase, a point mutation (G154A) was identified in a formate transporter (TON_1573). The TON_1573 (A52T) mutation, when introduced into the parent strain, conferred increase in formate consumption and H2 production. Another adaptive passage, carried out by culturing repeatedly in a bioreactor, resulted in a strain, which has a mutation in TON_1573 (C155A) causing amino acid change, A52E. These results implicate that substitution of A52 residue of a formate transporter might be a critical factor to ensure the increase in formate uptake and cell growth.


Asunto(s)
Proteínas Portadoras/metabolismo , Formiatos/metabolismo , Thermococcus/crecimiento & desarrollo , Thermococcus/metabolismo , Transporte Biológico , Proteínas Portadoras/química , Genoma Bacteriano , Estudio de Asociación del Genoma Completo , Hidrógeno/metabolismo , Modelos Moleculares , Mutación , Fenotipo , Relación Estructura-Actividad , Thermococcus/genética
19.
Extremophiles ; 21(3): 491-498, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28251348

RESUMEN

Protein disulfide oxidoreductases are redox enzymes that catalyze thiol-disulfide exchange reactions. These enzymes include thioredoxins, glutaredoxins, protein disulfide isomerases, disulfide bond formation A (DsbA) proteins, and Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO) homologues. In the genome of a hyperthermophilic archaeon, Thermococcus onnurineus NA1, the genes encoding one PfPDO homologue (TON_0319, Pdo) and three more thioredoxin- or glutaredoxin-like proteins (TON_0470, TON_0472, TON_0834) were identified. All except TON_0470 were recombinantly expressed and purified. Three purified proteins were reduced by a thioredoxin reductase (TrxR), indicating that each protein can form redox complex with TrxR. SurR, a transcription factor involved in the sulfur response, was tested for a protein target of a TrxR-redoxin system and only Pdo was identified to be capable of catalyzing the reduction of SurR. Electromobility shift assay demonstrated that SurR reduced by the TrxR-Pdo system could bind to the DNA probe with the SurR-binding motif, GTTttgAAC. In this study, we present the TrxR-Pdo couple as a redox-regulator for SurR in T. onnurineus NA1.


Asunto(s)
Proteínas Arqueales/metabolismo , Thermococcus/enzimología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Oxidación-Reducción , Unión Proteica , Homología de Secuencia , Azufre/metabolismo , Thermococcus/genética , Thermococcus/metabolismo , Reductasa de Tiorredoxina-Disulfuro/química , Reductasa de Tiorredoxina-Disulfuro/genética
20.
Appl Microbiol Biotechnol ; 101(12): 5081-5088, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28341885

RESUMEN

The F420-reducing hydrogenase of methanogens functions in methanogenesis by providing reduced coenzyme F420 (F420H2) as an electron donor. In non-methanogens, however, their physiological function has not been identified yet. In this study, we constructed an ΔfrhA mutant, whose frhA gene encoding the hydrogenase α subunit was deleted, in the non-methanogenic Thermococcus onnurineus NA1 as a model organism. There was no significant difference in the formate-dependent growth between the mutant and the wild-type strains. Interestingly, the mutation in the frhA gene affected the expression of genes involved in various cellular functions such as H2 oxidation, chemotactic signal transduction, and carbon monoxide (CO) metabolism. Among these genes, the CO oxidation gene cluster, enabling CO-dependent growth and H2 production, showed a 2.8- to 7.0-fold upregulation by microarray-based whole transcriptome expression profiling. The levels of proteins produced by this gene cluster were also significantly increased not only under the formate condition but also under the CO condition. In a controlled bioreactor, where 100% CO was continuously fed, the ΔfrhA mutant exhibited significant increases in cell growth (2.8-fold) and H2 production (3.4-fold). These findings strongly imply that this hydrogenase is functional in non-methanogens and is related to various cellular metabolic processes through an unidentified mechanism. An understanding of the mechanism by which the frhA gene deletion affected the expression of other genes will provide insights that can be applied to the development of strategies for the enhancement of H2 production using CO as a substrate.


Asunto(s)
Eliminación de Gen , Hidrógeno/metabolismo , Hidrogenasas/genética , Thermococcus/genética , Reactores Biológicos , Monóxido de Carbono/metabolismo , Perfilación de la Expresión Génica/métodos , Hidrogenasas/metabolismo , Familia de Multigenes , Mutación , Oxidación-Reducción , Thermococcus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...