Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2431, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105992

RESUMEN

Chemical bonds, including covalent and ionic bonds, endow semiconductors with stable electronic configurations but also impose constraints on their synthesis and lattice-mismatched heteroepitaxy. Here, the unique multi-scale van der Waals (vdWs) interactions are explored in one-dimensional tellurium (Te) systems to overcome these restrictions, enabled by the vdWs bonds between Te atomic chains and the spontaneous misfit relaxation at quasi-vdWs interfaces. Wafer-scale Te vdWs nanomeshes composed of self-welding Te nanowires are laterally vapor grown on arbitrary surfaces at a low temperature of 100 °C, bringing greater integration freedoms for enhanced device functionality and broad applicability. The prepared Te vdWs nanomeshes can be patterned at the microscale and exhibit high field-effect hole mobility of 145 cm2/Vs, ultrafast photoresponse below 3 µs in paper-based infrared photodetectors, as well as controllable electronic structure in mixed-dimensional heterojunctions. All these device metrics of Te vdWs nanomesh electronics are promising to meet emerging technological demands.

2.
Sci Rep ; 12(1): 12501, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864202

RESUMEN

The synthetic lethal association between BRCA deficiency and poly (ADP-ribose) polymerase (PARP) inhibition supports PARP inhibitor (PARPi) clinical efficacy in BRCA-mutated tumors. PARPis also demonstrate activity in non-BRCA mutated tumors presumably through induction of PARP1-DNA trapping. Despite pronounced clinical response, therapeutic resistance to PARPis inevitably develops. An abundance of knowledge has been built around resistance mechanisms in BRCA-mutated tumors, however, parallel understanding in non-BRCA mutated settings remains insufficient. In this study, we find a strong correlation between the epithelial-mesenchymal transition (EMT) signature and resistance to a clinical PARPi, Talazoparib, in non-BRCA mutated tumor cells. Genetic profiling demonstrates that SNAI2, a master EMT transcription factor, is transcriptionally induced by Talazoparib treatment or PARP1 depletion and this induction is partially responsible for the emerging resistance. Mechanistically, we find that the PARP1 protein directly binds to SNAI2 gene promoter and suppresses its transcription. Talazoparib treatment or PARP1 depletion lifts PARP1-mediated suppression and increases chromatin accessibility around SNAI2 promoters, thus driving SNAI2 transcription and drug resistance. We also find that depletion of the chromatin remodeler CHD1L suppresses SNAI2 expression and reverts acquired resistance to Talazoparib. The PARP1/CHD1L/SNAI2 transcription axis might be therapeutically targeted to re-sensitize Talazoparib in non-BRCA mutated tumors.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Cromatina , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Humanos , Neoplasias/genética , Ftalazinas/farmacología , Ftalazinas/uso terapéutico , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Poli(ADP-Ribosa) Polimerasas/genética , Factores de Transcripción de la Familia Snail/genética
3.
ACS Nano ; 16(7): 11036-11048, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35758898

RESUMEN

The incapability of modulating the photoresponse of assembled heterostructure devices has remained a challenge for the development of optoelectronics with multifunctionality. Here, a gate-tunable and anti-ambipolar phototransistor is reported based on 1D GaAsSb nanowire/2D MoS2 nanoflake mixed-dimensional van der Waals heterojunctions. The resulting heterojunction shows apparently asymmetric control over the anti-ambipolar transfer characteristics, possessing potential to implement electronic functions in logic circuits. Meanwhile, such an anti-ambipolar device allows the synchronous adjustment of band slope and depletion regions by gating in both components, thereby giving rise to the gate-tunability of the photoresponse. Coupled with the synergistic effect of the materials in different dimensionality, the hybrid heterojunction can be readily modulated by the external gate to achieve a high-performance photodetector exhibiting a large on/off current ratio of 4 × 104, fast response of 50 µs, and high detectivity of 1.64 × 1011 Jones. Due to the formation of type-II band alignment and strong interfacial coupling, a prominent photovoltaic response is explored in the heterojunction as well. Finally, a visible image sensor based on this hybrid device is demonstrated with good imaging capability, suggesting the promising application prospect in future optoelectronic systems.

4.
Am J Transl Res ; 13(5): 4908-4914, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150074

RESUMEN

OBJECTIVE: This study aimed to investigate the effect of humanized care in the treatment of neonatal jaundice and its effect on oxygen saturation. METHODS: A total of 202 infants with neonatal jaundice admitted to our hospital from January 2018 to June 2020 were divided into group A (n=102) and group B (n=100) according to their parents' choice. Group A received humanized care and group B received routine nursing. The clinical efficacy, serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), total bilirubin (TBIL) levels and arterial blood oxyhemoglobin saturation (SaO2), cerebral oxygen saturation (rSO2), mean arterial pressure (MAP) levels were determined between the two groups. RESULTS: Compared with group B, group A had significantly shorter time of fetal stool turning yellow, time of jaundice regression and duration of blue light irradiation (P < 0.05), lower serum AST, ALT and TBIL levels (P < 0.05), higher levels of SaO2, rSO2 and MAP (P < 0.05), higher average sleep time per day and mean daily milk consumption (P < 0.05). The incidence of adverse events in group A was significantly lower than that in group B (P < 0.05). Parental satisfaction with care in group A was significantly higher than that in group B (P < 0.05). CONCLUSION: Humanized care can significantly improve the prognosis and recovery speed and is conducive for SaO2 to return to normal level, and can reduce the adverse reactions with high parental satisfaction.

5.
Nanoscale Adv ; 3(22): 6254-6270, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36133491

RESUMEN

Low-dimensional nanomaterials have been proven as promising high-performance gas sensing components due to their fascinating structural, physical, chemical, and electronic characteristics. In particular, materials with low dimensionalities (i.e., 0D, 1D, and 2D) possess an extremely large surface area-to-volume ratio to expose abundant active sites for interactions with molecular analytes. Gas sensors based on these materials exhibit a sensitive response to subtle external perturbations on sensing channel materials via electrical transduction, demonstrating a fast response/recovery, specific selectivity, and remarkable stability. Herein, we comprehensively elaborate gas sensing performances in the field of sensitive detection of hazardous gases with diverse low-dimensional sensing materials and their hybrid combinations. We will first introduce the common configurations of gas sensing devices and underlying transduction principles. Then, the main performance parameters of gas sensing devices and subsequently the main underlying sensing mechanisms governing their detection operation process are outlined and described. Importantly, we also elaborate the compositional and structural characteristics of various low-dimensional sensing materials, exemplified by the corresponding sensing systems. Finally, our perspectives on the challenges and opportunities confronting the development and future applications of low-dimensional materials for high-performance gas sensing are also presented. The aim is to provide further insights into the material design of different nanostructures and to establish relevant design guidelines to facilitate the device performance enhancement of nanomaterial based gas sensors.

6.
J Med Chem ; 64(1): 644-661, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33356246

RESUMEN

The phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway is a frequently dysregulated pathway in human cancer, and PI3Kα is one of the most frequently mutated kinases in human cancer. A PI3Kα-selective inhibitor may provide the opportunity to spare patients the side effects associated with broader inhibition of the class I PI3K family. Here, we describe our efforts to discover a PI3Kα-selective inhibitor by applying structure-based drug design (SBDD) and computational analysis. A novel series of compounds, exemplified by 2,2-difluoroethyl (3S)-3-{[2'-amino-5-fluoro-2-(morpholin-4-yl)-4,5'-bipyrimidin-6-yl]amino}-3-(hydroxymethyl)pyrrolidine-1-carboxylate (1) (PF-06843195), with high PI3Kα potency and unique PI3K isoform and mTOR selectivity were discovered. We describe here the details of the design and synthesis program that lead to the discovery of 1.


Asunto(s)
Diseño de Fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Inhibidores de las Quinasa Fosfoinosítidos-3/química , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Animales , Línea Celular , Cromatografía Líquida de Alta Presión/métodos , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética/métodos , Ratones , Estructura Molecular , Inhibidores de las Quinasa Fosfoinosítidos-3/síntesis química , Ratas , Espectrometría de Masa por Ionización de Electrospray/métodos
7.
ACS Appl Mater Interfaces ; 12(50): 56330-56337, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33287538

RESUMEN

Because of the excellent electrical properties, III-V semiconductor nanowires are promising building blocks for next-generation electronics; however, their rich surface states inevitably contribute large amounts of charge traps, leading to gate bias stress instability and hysteresis characteristics in nanowire field-effect transistors (FETs). Here, we investigated thoroughly the gate bias stress and hysteresis effects in InAs nanowire FETs. It is observed that the output current decreases together with the threshold voltage shifting to the positive direction when a positive gate bias stress is applied, and vice versa for the negative gate bias stress. For double-sweep transfer characteristics, the significant hysteresis behavior is observed, depending heavily on the sweeping rate and range. On the basis of complementary investigations of these devices, charge traps are confirmed to be the dominant factor for these instability effects. Importantly, the hysteresis can be simulated well by utilizing a combination of the rate equation for electron density and the empirical model for electron mobility. This provides an accurate evaluation of carrier mobility, which is in distinct contrast to the overestimation of mobility when using the transconductance for calculation. All these findings are important for understanding the charge trap dynamics to further enhance the device performance of nanowire FETs.

8.
Sci Adv ; 6(46)2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33177088

RESUMEN

Rapid development of artificial intelligence techniques ignites the emerging demand on accurate perception and understanding of optical signals from external environments via brain-like visual systems. Here, enabled by quasi-two-dimensional electron gases (quasi-2DEGs) in InGaO3(ZnO)3 superlattice nanowires (NWs), an artificial visual system was built to mimic the human ones. This system is based on an unreported device concept combining coexistence of oxygen adsorption-desorption kinetics on NW surface and strong carrier quantum-confinement effects in superlattice core, to resemble the biological Ca2+ ion flux and neurotransmitter release dynamics. Given outstanding mobility and sensitivity of superlattice NWs, an ultralow energy consumption down to subfemtojoule per synaptic event is realized in quasi-2DEG synapses, which rivals that of biological synapses and now available synapse-inspired electronics. A flexible quasi-2DEG artificial visual system is demonstrated to simultaneously perform high-performance light detection, brain-like information processing, nonvolatile charge retention, in situ multibit-level memory, orientation selectivity, and image memorizing.

9.
ACS Appl Mater Interfaces ; 12(35): 39567-39577, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32805871

RESUMEN

Quasi-2D halide perovskites, especially the Ruddlesden-Popper perovskites (RPPs), have attracted great attention because of their promising properties for optoelectronics; however, there are still serious drawbacks, such as inefficient charge transport, poor stability, and unsatisfactory mechanical flexibility, restricting further utilization in advanced technologies. Herein, high-quality quasi-2D halide perovskite thin films are successfully synthesized with the introduction of the unique bication ethylenediammonium (EDA) via a one-step spin-coating method. This bication EDA, with short alkyl chain length, can not only substitute the typically bulky and weakly van der Waals-interacted organic bilayer spacer cations forming the novel Dion-Jacobson phase to enhance the mechanical flexibility of the quasi-2D perovskite (e.g., EDA(MA)n-1PbnI3n+1; MA = CH3NH3+) but also serve as a normal cation to achieve the more intact films (e.g., (iBA)2(MA)3-2x(EDA)xPb4I13). When fabricated into photodetectors, these optimized EDA-based perovskites deliver an excellent responsivity of 125 mA/W and a fast response time down to 380 µs under 532 nm irradiation. More importantly, the device with the Dion-Jacobson phase perovskite can be bent down to a radius of 2 mm and processed with 10,000 cycles of the bending test without any noticeable performance degradation because of its superior structure to RPPs. Besides, these films do not exhibit any material deterioration after ambient storage for 30 days. All these performance parameters are already comparable or even better than those of the state-of-the-art RPPs recently reported. This work provides valuable design guidelines of the quasi-2D perovskites to obtain high-performance flexible photodetectors for next-generation optoelectronics.

10.
Nanoscale ; 12(30): 16153-16161, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32700718

RESUMEN

Due to their unique properties, ZnO nanostructures have received considerable attention for application in electronics and optoelectronics; however, intrinsic ZnO nanomaterials usually suffer from large concentrations of lattice defects, such as oxygen vacancies, which restricts their material performance. Here, for the first time, highly-crystalline In and Ga co-doped ZnO nanowires (NWs) are achieved by ambient-pressure chemical vapor deposition. In contrast to conventional elemental doping, this In and Ga co-doping can not only enhance the carrier concentration, but also suppresses the formation of oxygen vacancies within the host lattice of ZnO NWs. Importantly, this co-doping is also believed to effectively minimize the generation of lattice strain defects due to the optimal ionic sizes of both In and Ga dopants. When configured into field-effect transistors (FETs), these co-doped NWs exhibit an enhanced average electron mobility of 315 cm2 V-1 s-1 and an impressive on/off current ratio of 1.87 × 108, which are already higher than those of other previously reported ZnO NW devices. In addition, these NW devices demonstrate efficient ultraviolet photodetection at under 261 nm irradiation with an improved responsivity of 1.41 × 107 A W-1, an excellent EQE of up to 6.72 × 109 and a fast response time down to 0.32 s. Highly-ordered NW parallel array thin-film transistors and photodetectors are also constructed to demonstrate the promising potential of the NWs for high-performance device applications.

11.
PLoS One ; 14(12): e0225531, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31881060

RESUMEN

Cytochrome P450 2E1 (CYP2E1) plays an important role in both alcohol-induced and immune-mediated liver injury. However, the mechanism underlying CYP2E1 transcriptional regulation has not been clarified. This study focused on the NF-κB-mediated transcriptional regulation of rat CYP2E1 by two independent signaling pathways in alcohol-induced and immune-mediated liver injury rat models. Male Sprague-Dawley rats were used in pharmacokinetic, molecular pharmacology, and morphology experiments. A rat model of alcohol-induced liver injury (AL) was established by feeding an ethanol-containing diet (42 g/kg/day) for 5 weeks as indicated. A rat immune-mediated liver injury (IM) model was established by the sequential injection of bacillus Calmette-Guérin (BCG, 125 mg/kg, once) via the tail vein after test day 21 and 10 µg/kg LPS 13 days later. HPLC, real-time PCR, western blot and ELISA analyses were performed. CYP2E1 expression was enhanced during the process of alcohol-induced liver injury (increased by 56%, P < 0.05) and significantly reduced during that of immune-mediated liver injury (reducedby52%, P < 0.05). NF-κB was activated in both the AL and IM groups (increased by 56% and76%, respectively, P < 0.05). Compared to those in the livers of AL model rats, the interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and iNOS levels in IM model rat livers were increased (increased by 26%, 21% and 101%, respectively, P < 0.05). The differential changes in CYP2E1 in the processes of alcohol-induced and immune-mediated liver injury may result from the differential expression of inflammatory cytokines and iNOS after NF-κB activation, leading to the NF-κB-mediated transcriptional regulation of rat CYP2E1 by two independent signaling pathways.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocromo P-450 CYP2E1/metabolismo , Hígado/patología , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Citocinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Etanol/toxicidad , Humanos , Hígado/inmunología , Masculino , Mycobacterium bovis/inmunología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Sprague-Dawley , Activación Transcripcional , Regulación hacia Arriba
12.
ACS Nano ; 13(10): 12042-12051, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31580641

RESUMEN

Due to the efficient photocarrier separation and collection coming from their distinctive band structures, superlattice nanowires (NWs) have great potential as active materials for high-performance optoelectronic devices. In this work, InGaZnO NWs with superlattice structure and controllable stoichiometry are obtained by ambient-pressure chemical vapor deposition. Along the NW axial direction, perfect alternately stacking of InGaO(ZnO)4+ blocks and InO2- layers is observed to form a periodic layered structure. Strikingly, when configured into individual NW photodetectors, the Ga concentration is found to significantly influence the amount of oxygen vacancies and oxygen molecules adsorbed on the NW surface, which dictate the photoconducting properties of the NW channels. Based on the optimized Ga concentration (i.e., In1.8Ga1.8Zn2.4O7), the individual NW device exhibits an excellent responsivity of 1.95 × 105 A/W and external quantum efficiency of as high as 9.28 × 107% together with a rise time of 0.93 s and a decay time of 0.2 s for the ultraviolet (UV) photodetection. Besides, the obtained NWs can be fabricated into large-scale parallel arrays on glass substrates as well to achieve fully transparent UV photodetectors, where the performance is on the same level or even better than many transparent photodetectors with high performance. All the results discussed above demonstrate the great potential of InGaZnO superlattice NWs for next-generation advanced optoelectronic devices.

13.
ACS Appl Mater Interfaces ; 11(38): 35238-35246, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31462044

RESUMEN

Because of their fascinating properties, two-dimensional (2D) nanomaterials have attracted a lot of attention for developing next-generation electronics and optoelectronics. However, there is still a lack of cost-effective, highly reproducible, and controllable synthesis methods for developing high-quality semiconducting 2D monolayers with a sufficiently large single-domain size. Here, utilizing a NaOH promoter and W foils as the W source, we have successfully achieved the fabrication of ultralarge single-domain monolayer WS2 films via a modified chemical vapor deposition method. With the proper introduction of a NaOH promoter, the single-domain size of monolayer WS2 can be increased to 550 µm, while the WS2 flakes can be well controlled by simply varying the growth duration and oxygen concentration in the carrier gas. Importantly, when they are fabricated into global backgated transistors, WS2 devices exhibit respectable peak electron mobility up to 1.21 cm2 V-1 s-1, which is comparable to those of many state-of-the-art WS2 transistors. Photodetectors based on these single-domain WS2 monolayers give an impressive photodetection performance with a maximum responsivity of 3.2 mA W-1. All these findings do not only provide a cost-effective platform for the synthesis of high-quality large single-domain 2D nanomaterials, but also facilitate their excellent intrinsic material properties for the next-generation electronic and optoelectronic devices.

14.
ACS Nano ; 13(5): 6060-6070, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31067402

RESUMEN

Controlled synthesis of lead halide perovskite (LHP) nanostructures not only benefits fundamental research but also offers promise for applications. Among many synthesis techniques, although catalytic vapor-liquid-solid (VLS) growth is recognized as an effective route to achieve high-quality nanostructures, until now, there is no detailed report on VLS grown LHP nanomaterials due to the emerging challenges in perovskite synthesis. Here, we develop a direct VLS growth for single-crystalline all-inorganic lead halide perovskite ( i.e., CsPbX3; X = Cl, Br, or I) nanowires (NWs). These NWs exhibit high-performance photodetection with the responsivity exceeding 4489 A/W and detectivity over 7.9 × 1012 Jones toward the visible light regime. Field-effect transistors (FET) based on individual CsPbX3 NWs are also fabricated, where they show the superior hole mobility of up to 3.05 cm2/(V s), higher than other all-inorganic LHP devices. This work provides important guidelines for the further improvement of these perovskite nanostructures for utilizations.

15.
ACS Appl Mater Interfaces ; 11(21): 19260-19266, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31075196

RESUMEN

Group III oxides, such as In2O3 and Ga2O3, have proved to be good candidates as active materials for novel electronic devices, including high-mobility transistors, gas sensors, and UV photodetectors. The ability to tune optical and electronic properties is provided by alloying In2 xGa2-2 xO3 (InGaO) in a broad compositional range. Further development of InGaO compounds in the form of nanowires (NWs) would overcome the technological limitations, such as the substrate crystal lattice mismatch and the inability to fabricate high quality structures above the critical thickness. In this work, optical properties of alloyed InGaO NWs in a wide compositional range are carefully assessed. Unlike classical optical characterization methods, photoacoustic spectroscopy reveals the fundamental absorption edge despite the strong light scattering in porous and randomly oriented nanowires structure. An unusual compositional band gap dependence is also observed, giving insight into the phase segregation effect and increased quality of mixed NWs. In addition, photoacoustic measurements disclose potential applications of InGaO NWs in remote, light-driven loudspeakers because of intense photoacoustic effect in nanowire ensembles in this material system.

16.
Insect Biochem Mol Biol ; 100: 66-77, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29959977

RESUMEN

Cytochrome P450 monooxygenases (CYPs) belong to a large superfamily of heme-containing enzymes catalyzing at least 60 different types of chemically distinct reactions. Insect CYPs play key roles in biotransformation of insecticides and plant chemicals, and are implicated in insecticide resistance and insect adaptation to their host plants. Insect CYPs are well studied in model insects, but little is known about the CYP superfamily in paurometabolous insects. We employed Illumina sequencing technology to identify 71 partial and 78 full-length open reading frames (ORFs) of LmCYP genes from the migratory locust (Locusta migratoria), one of the most destructive paurometabolous insect pests in the world. Seventy-eight LmCYPs with complete ORFs were formally named and classified into 19 families and 43 subfamilies. The majority of LmCYPs were mainly expressed in nymphal and adult stages, but LmCYP expression varied widely among thirteen different tissues examined. Regulatory elements were predicted in the promoter regions of LmCYP genes, and subsequent exposure of locusts to 12 different exogenous chemicals showed that 2-tridecanone and xanthotoxin were the most effective at increasing LmCYP expression. Our results represent the first transcriptome-wide analysis of the LmCYP superfamily from migratory locust, and provide a foundation for understanding the physiological functions, functional diversity, evolution, and regulatory mechanisms controlling the expression of the CYP gene superfamily in the locust.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Locusta migratoria/metabolismo , Animales , Sistema Enzimático del Citocromo P-450/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Locusta migratoria/genética , Noxas , Ninfa/metabolismo , Filogenia , Transcriptoma
17.
Adv Mater ; 30(11)2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29337397

RESUMEN

The development of highly active and stable electrocatalysts for ethanol electroxidation is of decisive importance to the successful commercialization of direct ethanol fuel cells. Despite great efforts invested over the past decade, their progress has been notably slower than expected. In this work, the facile solution synthesis of 2D PdAg alloy nanodendrites as a high-performance electrocatalyst is reported for ethanol electroxidation. The reaction is carried out via the coreduction of Pd and Ag precursors in aqueous solution with the presence of octadecyltrimethylammonium chloride as the structural directing agent. Final products feature small thickness (5-7 nm) and random in-plane branching with enlarged surface areas and abundant undercoordinated sites. They exhibit enhanced electrocatalytic activity (large specific current ≈2600 mA mgPd-1) and excellent operation stability (as revealed from both the cycling and chronoamperometric tests) for ethanol electroxidation. Control experiments show that the improvement comes from the combined electronic and structural effects.

18.
Nanoscale ; 9(18): 5879-5886, 2017 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-28430275

RESUMEN

Concave nanocrystals usually exhibit a large electromagnetic-field enhancement and superior catalytic performance due to their sharp corners, negative curvature and high-index facets. Conventional gold bipyramids (AuBPs) possess intriguing plasmonic properties which are attractive for various applications while the surface curvature of the reported bipyramids has not been fine-tuned to concave or convex structures to date. Additionally, the longitudinal surface plasmon resonance (LSPR) wavelengths of conventional AuBPs are mostly located in the range of 650-1350 nm and the sizes of these nanoparticles are usually not beyond 350 nm, which are not facilitated to some nano-focusing and nanophotonic applications. Herein, we reported a facile and robust approach for fabricating concave AuBPs (CAuBPs) with multiple high-index facets which are distinct from the conventional AuBPs and nanojavelin structures. The length of the as-prepared CAuBPs can even extend up to 800 nm. The CAuBP nanoparticles exhibit a strikingly pronounced broader plasmonic tuning range (even exceeding 1800 nm) and provide much higher electromagnetic-field enhancements in comparison to the conventional AuBPs, which broaden the promising applications of CAuBPs for many single-particle analyses. More importantly, the surface-enhanced Raman scattering (SERS) signals of CAuBPs on the single-particle or aqueous solution both displayed an enhanced intensity compared to conventional AuBPs. The CAuBP nanoparticles also exhibited improved catalytic activity due to the incredible abundance of uncoordinated atoms as active sites.

19.
Nanoscale ; 8(4): 2242-8, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26744075

RESUMEN

Most as-reported nanostructures through galvanic replacement reactions are still symmetric hollow structures, until now. Asymmetric structures fabricated through a galvanic replacement reaction have been rarely reported. However, asymmetric heterostructures can generally lead to new intriguing properties through asymmetric synergistic coupling. Here, we report a simple synthesis of an asymmetric one-ended AgPd bimetal on Au nanorods (AuNR) by combining a galvanic replacement reaction with an Ostwald ripening process. The morphological evolution from a nanodumbbell to a dandelion structure is thoroughly investigated. The unique asymmetric AgPd-AuNR heterostructures possess the required plasmonic performance and avoid strong damping caused by the poor plasmonic metal Pd, resulting in a superior photothermal heating performance and enhanced SERS sensitivity for in situ monitoring of a catalytic reaction compared with the symmetric counterparts.

20.
Pharm Biol ; 52(11): 1460-6, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24963944

RESUMEN

CONTEXT: Ammonium pyrrolidine dithiocarbamate (PDTC) is a potent inhibitor of nuclear factor-κB (NF-κB). Recent studies have shown that NF-κB plays an essential role in the regulation of genes whose products are involved in the pathogenesis of immunological liver injury. OBJECTIVE: To study the function of NF-κB in immunological liver injury of rat model and its effect on CYP2E1 content and metabolic activity. MATERIALS AND METHODS: The present study investigated the effect of passivating NF-κB activation on CYP2E1 using Bacillus calmette Guérin (BCG)-induced immunological liver injury in Sprague-Dawley rats measured in terms of enzyme levels. The degree of hepatic injury of rats was measured by using biochemical parameters, hepatic tissue pathological changes, and physiological parameters. Protein localization of liver NF-κB was detected by immunohistochemical assay. Western blot analysis was used to detect the protein expression of NF-κB, IκBα, iNOS, and CYP2E1. The content of CYP2E1 of homogenate in the rat liver was detected by ELISA assay and the enzyme kinetics of CYP2E1 probe drug chlorzoxazone was evaluated by high-performance liquid chromatography (HPLC) assay. RESULTS: The results showed that BCG-pretreatment (125 mg/kg) significantly (p < 0.01) increased the weight of liver and spleen (increased by 70% and 248%, respectively), serum levels of alanine transarninase (ALT) and aspartate aminotransferase (AST) (increased by 200% and 75.8%, respectively), the expression of NF-κB and iNOS (increased by 228% and 303%, respectively), and decreased CYP2E1 content and metabolic activity (p < 0.05). Administration of PDTC (50, 100, and 200 mg/kg) reversed above hepatic injury stimulated by BCG in vivo. Moreover, PDTC (ED50: 76 mg/kg) dose dependently inhibited down-regulation of CYP2E1 (p < 0.05). CONCLUSION: Passivation of NF-κB can inhibit the down-regulation of CYP2E1 and iNOS to induce in rat liver tissue with immunological liver injury; NF-κB may be involved in the CYP2E1 regulation through iNOS.


Asunto(s)
Citocromo P-450 CYP2E1/metabolismo , Hepatopatías/tratamiento farmacológico , Hepatopatías/inmunología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Pirrolidinas/uso terapéutico , Tiocarbamatos/uso terapéutico , Animales , Hepatopatías/metabolismo , Masculino , Mycobacterium bovis , Pirrolidinas/farmacología , Ratas , Ratas Sprague-Dawley , Tiocarbamatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...