Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(5): 6476-6483, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35077129

RESUMEN

The direct usage of CO2 in the flue gas to produce fuels or chemicals is of great significance from energy-saving and low-cost perspectives, yet it is still underexplored. Herein, we report the photoreduction of CO2 from the simulated industrial exhaust by synergistic catalysis of TEOA and a metal-free composite (COF1-g-C3N4) fabricated via covalently grafting COF1 with g-C3N4. The hydrogen bond interaction between TEOA and hydrazine units on COF1 is detected in diluted CO2, which leads to significantly enhanced light absorption in the whole visible-light region. Also, the photo-induced electrons undergo fast transfer from COF1 to g-C3N4. This kind of dynamic interface with enhanced light absorption and electron transfer effects promotes the photosynthetic yield of syngas to 165.6 µmol·g-1·h-1 with the use of simulated exhaust gas as a raw material directly. The photosynthetic yield of syngas ranks among the highest of known metal-free catalysts in diluted CO2. This work provides a general rule for designing efficient catalysts via a controlled catalytic interface and new insights into the role of TEOA in photochemical CO2 reduction.

2.
Nat Commun ; 12(1): 813, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547305

RESUMEN

Metal-organic layers with ordered structure and molecular tunability are of great potential as heterogeneous catalysts due to their readily accessible active sites. Herein, we demonstrate a facile template strategy to prepare metal-organic layers with a uniform thickness of three metal coordination layers (ca. 1.5 nm) with graphene oxide as both template and electron mediator. The resulting hybrid catalyst exhibits an excellent performance for CO2 photoreduction with a total CO yield of 3133 mmol g-1MOL (CO selectivity of 95%), ca. 34 times higher than that of bulky Co-based metal-organic framework. Systematic studies reveal that well-exposed active sites in metal-organic layers, and facile electron transfer between heterogeneous and homogeneous components mediated by graphene oxide, greatly contribute to its high activity. This work highlights a facile way for constructing ultrathin metal-organic layers and demonstrates charge transfer pathway between conductive template and catalyst for boosting photocatalysis.

3.
Gene ; 774: 145420, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33434627

RESUMEN

ClpXP in Escherichia coli is a proteasome degrading protein substrates. It consists of one hexamer of ATPase (ClpX) and two heptamers of peptidase (ClpP). The ClpX binds ATP and translocates the substrate protein into the ClpP chamber by binding and hydrolysis of ATP. At single molecular level, ClpX harnesses cycles of power stroke (dwell and burst) to unfold the substrates, then releases the ADP and Pi. Based on the construction and function of ClpXP, especially the recent progress on how ClpX unfold protein substrates, in this mini-review, a currently proposed single ClpX molecular model system detected by optical tweezers, and its prospective for the elucidation of the mechanism of force generation of ClpX in its power stroke and the subunit interaction with each other, were discussed in detail.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Endopeptidasa Clp/fisiología , Proteínas de Escherichia coli/fisiología , Escherichia coli/enzimología , Chaperonas Moleculares/fisiología , Imagen Individual de Molécula , ATPasas Asociadas con Actividades Celulares Diversas/química , Investigación Biomédica , Endopeptidasa Clp/química , Proteínas de Escherichia coli/química , Redes y Vías Metabólicas , Mitocondrias/fisiología , Modelos Moleculares , Chaperonas Moleculares/química , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/fisiología , Estructura Molecular , Relación Estructura-Actividad
4.
Nat Commun ; 11(1): 490, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980657

RESUMEN

The oxidized platinum (Pt) can exhibit better electrocatalytic activity than metallic Pt0 in the hydrogen evolution reaction (HER), which has aroused great interest in exploring the role of oxygen in Pt-based catalysts. Herein, we select two structurally well-defined polyoxometalates Na5[H3Pt(IV)W6O24] (PtW6O24) and Na3K5[Pt(II)2(W5O18)2] (Pt2(W5O18)2) as the platinum oxide model to investigate the HER performance. Electrocatalytic experiments show the mass activities of PtW6O24/C and Pt2(W5O18)2/C are 20.175 A mg-1 and 10.976 A mg-1 at 77 mV, respectively, which are better than that of commercial 20% Pt/C (0.398 A mg-1). The in situ synchrotron radiation experiments and DFT calculations suggest that the elongated Pt-O bond acts as the active site during the HER process, which can accelerate the coupling of proton and electron and the rapid release of H2. This work complements the knowledge boundary of Pt-based electrocatalytic HER, and suggests another way to update the state-of-the-art electrocatalyst.

5.
Chem Sci ; 11(11): 3007-3015, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34122803

RESUMEN

The electrocatalytic carbon dioxide (CO2) reduction reaction (CO2RR) involves a variety of electron transfer pathways, resulting in poor reaction selectivity, limiting its use to meet future energy requirements. Polyoxometalates (POMs) can both store and release multiple electrons in the electrochemical process, and this is expected to be an ideal "electron switch" to match with catalytically active species, realize electron transfer modulation and promote the activity and selectivity of the electrocatalytic CO2RR. Herein, we report a series of new POM-based manganese-carbonyl (MnL) composite CO2 reduction electrocatalysts, whereby SiW12-MnL exhibits the most remarkable activity and selectivity for CO2RR to CO, resulting in an increase in the faradaic efficiency (FE) from 65% (MnL) to a record-value of 95% in aqueous electrolyte. A series of control electrochemical experiments, photoluminescence spectroscopy (PL), transient photovoltage (TPV) experiments, and density functional theory (DFT) calculations revealed that POMs act as electronic regulators to control the electron transfer process from POM to MnL units during the electrochemical reaction, enhancing the selectivity of the CO2RR to CO and depressing the competitive hydrogen evolution reaction (HER). This work demonstrates the significance of electron transfer modulation in the CO2RR and suggests a new idea for the design of efficient electrocatalysts towards CO2RR.

6.
ACS Appl Mater Interfaces ; 8(23): 14535-41, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27172231

RESUMEN

Various porous Zn1-xCdxS/CdS heteorostructures were achieved via in situ synthesis method with organic amines as the templates. Because of the larger radius of Cd(2+) than that of Zn(2+), CdS quantum dots are formed and distributed uniformly in the network of Zn1-xCdxS. The Zn1-xCdxS/CdS heterostructure with small Cd content (10 at%) derived from ethylenediamine shows very high H2-evolution rate of 667.5 µmol/h per 5 mg photocatalyst under visible light (λ ≥ 420 nm) with an apparent quantum efficiency of 50.1% per 5 mg at 420 nm. Moreover, this Zn1-xCdxS/CdS heterostructure photocatalyst also shows an excellent photocatalytic stability over 100 h.

7.
J Plant Physiol ; 192: 28-37, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26812087

RESUMEN

Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function. This sub-organelle compartment contains at least 80 lumenal proteins, more than 30 of which are known to contain disulfide bonds. Thioredoxins (Trx) in the chloroplast stroma are photo-reduced in the light, transferring reducing power to the proteins in the thylakoid membrane and ultimately the lumen through a trans-thylakoid membrane-reduced, equivalent pathway. The discovery of lumenal thiol oxidoreductase highlights the importance of the redox regulation network in the lumen for controlling disulfide bond formation, which is responsible for protein activity and folding and even plays a role in photo-protection. In addition, many lumenal members involved in photosystem assembly and non-photochemical quenching are likely required for reduction and/or oxidation to maintain their proper efficiency upon changes in light intensity. In light of recent findings, this review summarizes the multiple redox processes that occur in the thylakoid lumen in great detail, highlighting the essential auxiliary roles of lumenal proteins under fluctuating light conditions.


Asunto(s)
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Oxidorreductasas/metabolismo , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efectos de la radiación , Luz , Oxidación-Reducción , Tiorredoxinas/metabolismo , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
8.
Nanoscale ; 7(14): 6356-62, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25786139

RESUMEN

Graphene-supported bimetallic nanoparticles are promising nanocatalysts, which can show strong and tunable catalytic activity and selectivity. Herein room-temperature-ionic-liquid-assisted metal sputtering is utilized to synthesize PdAu bimetallic nanoparticles on graphene with bare surface, small size, high surface density and controlled Pd-to-Au ratio. This controllable synthetic approach is green-chemistry compatible and totally free of additives and byproducts. The supported PdAu nanoparticles show excellent catalytic capabilities for both oxidation and reduction reactions, strongly dependent on the Pd-to-Au ratio. A strong correlation among catalytic performance, bimetallic composition and charge redistribution in the PdAu nanoparticles has been demonstrated. The results suggest that sufficient Au d-holes appear to be significant to the catalysis of oxidation reaction, and a metallic Pd surface is critical to the catalysis of reduction reaction. By the present method, the bimetallic combination can be tailored for distinct types of catalytic reactions.

9.
Inorg Chem ; 53(24): 13042-8, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25454842

RESUMEN

It still remains a great challenge to design and construct framework-structured weak ferromagnets with large canting angle which is an effective approach for high performance magnets. According to the strategy of antisymmetric interaction causing spin canting, we report the design of four cobalt compounds, which were tested by X-ray single crystal diffraction, TGA, PXRD, and magnetic measurement. Single-crystal structure analysis reveals that compound 1 has a 2D structure, complex 2 has a 3,4-connected 3D framework, and complex 3 exhibits a 3D net structure with rare 3,5-connected 2-nodal ß-SnF2 topology and the solvent MeOH trapped in the 3D channels as guests. The magnetic property of 3 is spin canting just as designed, with TN about 4.0 K and large canting angle of 14.8°. Highly stable compound 3 sustains its framework in air for more than 12 months, in which the guest MeOH molecules can be replaced by water to form complex 4.

11.
Inorg Chem ; 45(11): 4364-71, 2006 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-16711685

RESUMEN

The tetra-(8-hydroxyquinolinato) boron complex (Bq) and 3,3',4,4'-benzophenone tetracarboxylic anion (BPTC) were successfully intercalated into layered double hydroxides with an ion-exchange method. Elemental analyses, powder X-ray diffraction, FTIR spectra, and thermogravimetric analyses indicated that the hydrothermal treatment could efficiently improve the reaction process, the purity and crystallinity of products, and that Bq and BPTC molecules steadily arranged with C2 axis perpendicular to the layer plane, and the J-type aggregate in the host interlayer, respectively. The fluorescence studies showed that, compared with those observed in the dilute solutions of the guests, the spectra of Mg3Al-Bq and Mg3Al-BPTC evolved to the high-energy side and the low-energy side with increasing their loading, respectively, which were attributed to various arrangements of guests and the increased intermolecular interaction. Furthermore, their fluorescence intensity gradually decreased with increasing the intercalated guest content due to the concentration quenching, and Mg3Al-Bq exhibits enhanced solid-state blue luminescence due to a more rigid and constrained environment of the host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...