Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20169441

RESUMEN

We describe scalable and cost-efficient production of full length, His-tagged SARS-CoV-2 spike glycoprotein trimer by CHO cells that can be used to detect SARS-CoV-2 antibodies in patient sera at high specificity and sensitivity. Transient production of spike in both HEK and CHO cells mediated by PEI was increased significantly (up to 10.9-fold) by a reduction in culture temperature to 32{degrees}C to permit extended duration cultures. Based on these data GS-CHO pools stably producing spike trimer under the control of a strong synthetic promoter were cultured in hypothermic conditions with combinations of bioactive small molecules to increase yield of purified spike product 4.9-fold to 53 mg/L. Purification of recombinant spike by Nichelate affinity chromatography initially yielded a variety of co-eluting protein impurities identified as host cell derived by mass spectrometry, which were separated from spike trimer using a modified imidazole gradient elution. Purified CHO spike trimer antigen was used in ELISA format to detect IgG antibodies against SARS-CoV-2 in sera from patient cohorts previously tested for viral infection by PCR, including those who had displayed COVID-19 symptoms. The antibody assay, validated to ISO 15189 Medical Laboratories standards, exhibited a specificity of 100% and sensitivity of 92.3%. Our data show that CHO cells are a suitable host for the production of larger quantities of recombinant SARS-CoV-2 trimer which can be used as antigen for mass serological testing.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-231282

RESUMEN

Serology testing for COVID-19 is highly attractive because of the relatively short diagnosis time and the ability to test for an active immune response against the SARS-CoV-2. In many types of serology tests, the sensitivity and the specificity are directly influenced by the quality of the antigens manufactured. Protein purification of these recombinantly expressed viral antigens [e.g., spike and its receptor binding domain (RBD)] is an important step in the manufacturing process. Simple and high-capacity protein purification schemes for spike, RBD, and CR3022 mAb, recombinantly expressed in CHO and HEK293 cells, are reported in this article. The schemes consist of an affinity chromatography step and a desalting step. Purified proteins were validated in ELISA-based serological tests. Interestingly, extracellular matrix proteins [most notably heparan sulfate proteoglycan (HSPG)] were co-purified from spike-expressing CHO culture with a long cultivation time. HSPG-spike interaction could play a functional role in the pathology and the pathogenesis of SARS-CoV-2 and other coronaviruses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...