Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biol Psychiatry Glob Open Sci ; 4(6): 100362, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39262818

RESUMEN

Background: Exposure to adversity, including unpredictable environments, during early life is associated with neuropsychiatric illness in adulthood. One common factor in this sequela is anhedonia, the loss of responsivity to previously reinforcing stimuli. To accelerate the development of new treatment strategies for anhedonic disorders induced by early-life adversity, animal models have been developed to capture critical features of early-life stress and the behavioral deficits that such stressors induce. We have previously shown that rats exposed to the limited bedding and nesting protocol exhibited blunted reward responsivity in the probabilistic reward task, a touchscreen-based task reverse translated from human studies. Methods: To test the quantitative limits of this translational platform, we examined the ability of Bayesian computational modeling and probability analyses identical to those optimized in previous human studies to quantify the putative mechanisms that underlie these deficits with precision. Specifically, 2 parameters that have been shown to independently contribute to probabilistic reward task outcomes in patient populations, reward sensitivity and learning rate, were extracted, as were trial-by-trial probability analyses of choices as a function of the preceding trial. Results: Significant deficits in reward sensitivity, but not learning rate, contributed to the anhedonic phenotypes in rats exposed to early-life adversity. Conclusions: The current findings confirm and extend the translational value of these rodent models by verifying the effectiveness of computational modeling in distinguishing independent features of reward sensitivity and learning rate that complement the probabilistic reward task's signal detection end points. Together, these metrics serve to objectively quantify reinforcement learning deficits associated with anhedonic phenotypes.


Exposure to early-life adversity can lead to psychiatric illness, including anhedonia, the loss of pleasure from previously rewarding activities. This article describes findings from rats exposed to a model of simulated poverty on a touchscreen-based assay reverse translated from a task used to characterize anhedonia in humans. We documented the ability of Bayesian computational modeling and probability analyses, identical to those used with humans, to objectively quantify reinforcement learning deficits associated with anhedonia in rats.

2.
Psychedelic Med (New Rochelle) ; 2(2): 96-108, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39149579

RESUMEN

Background: Frontline antidepressants such as selective serotonin reuptake inhibitors (SSRIs) leave many patients with unmet treatment needs. Moreover, even when SSRIs reduce depressive symptoms, anhedonia, the loss of pleasure to previously rewarding activities, often remains unabated. This state of affairs is disheartening and calls for the development of medications to more directly treat anhedonia. The atypical psychedelic 3,4-methylenedioxymethamphetamine (MDMA) might have promise as a prohedonic medication given its efficacious applications for treatment-resistant post-traumatic stress disorder and comorbid depression. However, in addition to its prosocial effects as an entactogen, MDMA is also associated with neurotoxic cognitive deficits. The present studies were designed to examine the relative potency of MDMA in female and male rats across three distinct behavioral domains to assist in defining a preclinical profile of MDMA as a candidate prohedonic therapeutic. Methods: First, signal detection metrics of reward responsivity were examined using the touchscreen probabilistic reward task (PRT), a reverse-translated assay used to objectively quantify anhedonic phenotypes in humans. Second, to probe potential cognitive deficits, touchscreen-based assays of psychomotor vigilance and delayed matching-to-position were used to examine attentional processes and short-term spatial memory, respectively. Finally, MDMA's entactogenic effects were studied via pairwise assessments of social interaction facilitated by machine-learning analyses. Results: Findings show (1) dose-dependent increases in reward responsivity as quantified by the PRT, (2) dose-dependent deficits in attention and short-term memory, and (3) dose-dependent increases in aspects of prosocial interaction in male but not female subjects. Neither the desirable (prohedonic) nor undesirable (cognition disruptive) effects of MDMA persisted beyond 24 h. Conclusions: The present results characterize MDMA as a promising prohedonic treatment, notwithstanding some liability for short-lived cognitive impairment following acute administration.

3.
Nature ; 632(8027): 995-1008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38862027

RESUMEN

The recent acceleration of commercial, private and multi-national spaceflight has created an unprecedented level of activity in low Earth orbit, concomitant with the largest-ever number of crewed missions entering space and preparations for exploration-class (lasting longer than one year) missions. Such rapid advancement into space from many new companies, countries and space-related entities has enabled a 'second space age'. This era is also poised to leverage, for the first time, modern tools and methods of molecular biology and precision medicine, thus enabling precision aerospace medicine for the crews. The applications of these biomedical technologies and algorithms are diverse, and encompass multi-omic, single-cell and spatial biology tools to investigate human and microbial responses to spaceflight. Additionally, they extend to the development of new imaging techniques, real-time cognitive assessments, physiological monitoring and personalized risk profiles tailored for astronauts. Furthermore, these technologies enable advancements in pharmacogenomics, as well as the identification of novel spaceflight biomarkers and the development of corresponding countermeasures. In this Perspective, we highlight some of the recent biomedical research from the National Aeronautics and Space Administration, Japan Aerospace Exploration Agency, European Space Agency and other space agencies, and detail the entrance of the commercial spaceflight sector (including SpaceX, Blue Origin, Axiom and Sierra Space) into aerospace medicine and space biology, the first aerospace medicine biobank, and various upcoming missions that will utilize these tools to ensure a permanent human presence beyond low Earth orbit, venturing out to other planets and moons.


Asunto(s)
Medicina Aeroespacial , Astronautas , Multiómica , Vuelo Espacial , Humanos , Medicina Aeroespacial/métodos , Medicina Aeroespacial/tendencias , Bancos de Muestras Biológicas , Biomarcadores/metabolismo , Biomarcadores/análisis , Cognición , Internacionalidad , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/tendencias , Multiómica/métodos , Multiómica/tendencias , Farmacogenética/métodos , Farmacogenética/tendencias , Medicina de Precisión/métodos , Medicina de Precisión/tendencias , Vuelo Espacial/métodos , Vuelo Espacial/tendencias
4.
J Neurochem ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38922872

RESUMEN

Stagnation in the development of novel therapeutic strategies for treatment-resistant depression has encouraged continued interest in improving preclinical methods. One tactic prioritizes the reverse translation of behavioral tasks developed to objectively quantify depressive phenotypes in patient populations for their use in laboratory animals via touchscreen technology. After cross-species concordance in task outcomes under healthy conditions is confirmed, construct validity can be further enhanced by identifying environmental stressors that reliably produce deficits in task performance that resemble those in depressive participants. The present studies characterized in male rats the ability of two chronic ecologically relevant stressors, inescapable ice water or isolated restraint, to produce depressive-like behavioral phenotypes in the Probabilistic Reward Task (PRT) and Psychomotor Vigilance Task (PVT). These tasks previously have been reverse-translated using touchscreen technology for rodents and nonhuman primates to objectively quantify, respectively, reward responsivity (anhedonia) and attentional processes (impaired cognitive function), each of which are core features of major depressive disorder. In the PRT, both inescapable ice water and isolated restraint produced persistent anhedonic phenotypes compared to non-stressed control performance (i.e., significantly blunted response bias for the richly rewarded stimulus). In the PVT, both chronic stressors impaired attentional processing, revealed by increases in titrated reaction times; however, these deficits largely subsided by the end of the chronic condition. Taken together, these findings confirm the ability of reverse-translated touchscreen tasks to effectively generate behavioral phenotypes that exhibit expected deficits in performance outcomes following exposure to chronic ecologically relevant stress. In turn, this approach is well positioned to appraise the ability of candidate therapeutics to attenuate or reverse such behavioral deficits and, thereby, contribute to preclinical medications development for treatment-resistant depression.

5.
eNeuro ; 11(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627065

RESUMEN

Resting-state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys [n = 12 adolescents (6 male/6 female) ∼2.5 years and n = 15 adults (7 male/8 female) ∼9.5 years] were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 T scanner. Group-level independent component analysis (ICA; 30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward, and cognitive processes, were identified in both adolescent and adult monkeys. The reproducibility of these RSNs was evaluated across several ICA model orders. Adults showed a trend for greater connectivity compared with adolescent subjects in two of the networks of interest: (1) in the right occipital region with the OFC network and (2) in the left temporal cortex, bilateral occipital cortex, and cerebellum with the posterior cingulate network. However, when age was entered into the above model, this trend for significance was lost. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Saimiri , Animales , Imagen por Resonancia Magnética/métodos , Masculino , Femenino , Encéfalo/fisiología , Encéfalo/diagnóstico por imagen , Descanso/fisiología , Vigilia/fisiología , Mapeo Encefálico/métodos , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Vías Nerviosas/fisiología
6.
Nat Commun ; 14(1): 7779, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012180

RESUMEN

Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.


Asunto(s)
Radiación Cósmica , Exposición a la Radiación , Vuelo Espacial , Ratones , Masculino , Animales , Humanos , Astronautas , Radiación Cósmica/efectos adversos , Cognición
7.
Artículo en Inglés | MEDLINE | ID: mdl-37770642

RESUMEN

The Probabilistic Reward Task (PRT) is a laboratory-based technique used to objectively quantify responsivity to reward. The PRT was initially designed to identify reinforcement learning deficits in clinical populations and subsequently was reverse-translated for use in preclinical studies with rats and monkeys. In this task, subjects make visual discriminations and asymmetric probabilistic contingencies are arranged such that correct responses to one stimulus (rich) are reinforced more often than correct responses to the other (lean). Numerous studies have demonstrated that healthy subjects reliably develop a response bias toward the richly rewarded stimulus, whereas humans with anhedonia and laboratory animals with a history of chronic stress exhibit a blunted response bias. This is important because anhedonia, the loss of responsivity to previously rewarding stimuli, is a behavioral phenotype that is a cardinal feature of multiple neuropsychiatric conditions and is without approved pharmacotherapeutic options. To aid in addressing this critical treatment gap, this report describes validation of the first PRT designed for mice, which are a commonly utilized species in preclinical research toward neuropsychiatric medications development. Results reveal orderly psychophysical functions in response to asymmetric probabilistic contingencies in mice, with signal detection outcomes comparable to previous PRT findings in humans, rats, and monkeys. Taken together, such robust cross-species continuity in task performance confirms that the mouse is well-positioned to serve in bidirectional research efforts between human and animal laboratories. These efforts may accelerate the development of treatment options for anhedonia in the different neuropsychiatric conditions in which it is prominent.

9.
Neuropsychopharmacology ; 48(12): 1752-1759, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37258714

RESUMEN

Early-life stress (ELS) leaves signatures upon the brain that persist throughout the lifespan and increase the risk of psychiatric illnesses including mood and anxiety disorders. In humans, myriad forms of ELS-including childhood abuse, bullying, poverty, and trauma-are increasingly prevalent. Understanding the signs of ELS, including those associated with psychiatric illness, will enable improved treatment and prevention. Here, we developed a novel procedure to model human ELS in mice and identify translationally-relevant biomarkers of mood and anxiety disorders. We exposed male mice (C57BL/6 J) to an early-life (juvenile) chronic social defeat stress (jCSDS) and examined social interaction and responsivity to reward during adulthood. As expected, jCSDS-exposed mice showed a socially avoidant phenotype in open-field social interaction tests. However, sucrose preference tests failed to demonstrate ELS-induced reductions in choice for the sweetened solution, suggesting no effect on reward function. To explore whether other tasks might be more sensitive to changes in motivation, we tested the mice in the Probabilistic Reward Task (PRT), a procedure often used in humans to study reward learning deficits associated with depressive illness. In a touchscreen PRT variant that was reverse-translated to maximize alignment with the version used in human subjects, mice exposed to jCSDS displayed significant reductions in the tendency to develop response biases for the more richly-rewarded stimulus, a hallmark sign of anhedonia when observed in humans. Our findings suggest that translationally-relevant procedures that utilize the same endpoints across species may enable the development of improved model systems that more accurately predict outcomes in humans.


Asunto(s)
Experiencias Adversas de la Infancia , Humanos , Ratones , Masculino , Niño , Animales , Adulto , Estrés Psicológico/complicaciones , Ratones Endogámicos C57BL , Encéfalo , Recompensa
10.
Neuropsychopharmacology ; 48(4): 700-709, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646816

RESUMEN

Blunted reward learning and reward-related activation within the corticostriatal-midbrain circuitry have been implicated in the pathophysiology of anhedonia and depression. Unfortunately, the search for more efficacious interventions for anhedonic behaviors has been hampered by the use of vastly different preclinical and clinical assays. In a first step in addressing this gap, in the current study, we used event-related potentials and spectral analyses in conjunction with a touchscreen version of the rodent Probabilistic Reward Task (PRT) to identify the electrophysiological signatures of reward learning in rats. We trained 11 rats (5 females and 6 males) on the rodent touchscreen-based PRT and subsequently implanted them with deep electrodes in the anterior cingulate cortex (ACC) and nucleus accumbens (NAc) for local field potentials recordings during the PRT. Behaviorally, the expected responsivity-to-reward profile was observed. At the electrophysiological level, we identified a negative amplitude deflection 250-500 ms after feedback in the ACC and NAc electrodes, as well as power increase in feedback-locked delta (1-5 Hz) and alpha/beta (9-17 Hz) bands in both electrodes for rewarded trials. Using a reverse-translational approach, we identified electrophysiological signatures of reward learning in rats similar to those described in humans. These findings and approaches might provide a useful translational platform to efficiently evaluate novel therapeutics targeting anhedonia.


Asunto(s)
Anhedonia , Roedores , Humanos , Masculino , Femenino , Ratas , Animales , Aprendizaje/fisiología , Recompensa , Núcleo Accumbens/fisiología
11.
bioRxiv ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711620

RESUMEN

Resting state networks (RSNs) are increasingly forwarded as candidate biomarkers for neuropsychiatric disorders. Such biomarkers may provide objective measures for evaluating novel therapeutic interventions in nonhuman primates often used in translational neuroimaging research. This study aimed to characterize the RSNs of awake squirrel monkeys and compare the characteristics of those networks in adolescent and adult subjects. Twenty-seven squirrel monkeys ( n =12 adolescents [6 male/6 female] ∼2.5 years and n =15 adults [7 male/8 female] ∼9.5 years) were gradually acclimated to awake scanning procedures; whole-brain fMRI images were acquired with a 9.4 Tesla scanner. Group level independent component (IC) analysis (30 ICs) with dual regression was used to detect and compare RSNs. Twenty ICs corresponding to physiologically meaningful networks representing a range of neural functions, including motor, sensory, reward (e.g., basal ganglia), and cognitive processes were identified in both adolescent and adult monkeys. Significant age-related differences between the adult and adolescent subjects (adult > adolescent) were found in two networks of interest: (1) the right upper occipital region with an OFC IC and (2) the left temporal cortex, bilateral visual areas, and cerebellum with the cingulate IC. These results demonstrate that squirrel monkey RSNs are stable and consistent with RSNs previously identified in humans, rodents, and other nonhuman primate species. These data also identify several networks in adolescence that are conserved and others that may change into adulthood. Significance Statement: Functional magnetic resonance imaging procedures have revealed important information about how the brain is modified by experimental manipulations, disease states, and aging throughout the lifespan. Preclinical neuroimaging, especially in nonhuman primates, has become a frequently used means to answer targeted questions related to brain resting-state functional connectivity. The present study characterized resting state networks (RSNs) in adult and adolescent squirrel monkeys; twenty RSNs corresponding to networks representing a range of neural functions were identified. The RSNs identified here can be utilized in future studies examining the effects of experimental manipulations on brain connectivity in squirrel monkeys. These data also may be useful for comparative analysis with other primate species to provide an evolutionary perspective for understanding brain function and organization.

12.
Front Neurosci ; 16: 998351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36248648

RESUMEN

Aim: There is increasing concern that cannabinoid exposure during adolescence may disturb brain maturation and produce long-term cognitive deficits. However, studies in human subjects have provided limited evidence for such causality. The present study utilized behavioral and neuroimaging endpoints in female non-human primates to examine the effects of acute and chronic exposure during adolescence to the cannabinoid receptor full agonist, AM2389, on cognitive processing and brain function and chemistry. Materials and methods: Adolescent female rhesus macaques were trained on a titrating-delay matching-to-sample (TDMTS) touchscreen task that assays working memory. TDMTS performance was assessed before and during chronic exposure to AM2389, following antagonist (rimonabant) administration, and after discontinuation of the chronic regimen. Resting-state fMRI connectivity and magnetic resonance spectroscopy data were acquired prior to drug treatment, during chronic exposure, and following its discontinuation. Voxels were placed in the medial orbitofrontal cortex (mOFC), a region involved in memory processing that undergoes maturation during adolescence. Results: TDMTS performance was dose-dependently disrupted by acute AM2389; however, chronic treatment resulted in tolerance to these effects. TDMTS performance also was disrupted by discontinuation of the chronic regimen but surprisingly, not by rimonabant administration during chronic AM2389 treatment. mOFC N-acetylaspartate/creatine ratio decreased after acute and chronic administration but returned to baseline values following discontinuation of chronic treatment. Finally, intra-network functional connectivity (mOFC) increased during the chronic regimen and returned to baseline values following its discontinuation. Conclusion: Neural effects of a cannabinergic drug may persist during chronic exposure, notwithstanding the development of tolerance to behavioral effects. However, such effects dissipate upon discontinuation, reflecting the restorative capacity of affected brain processes.

13.
Psychopharmacology (Berl) ; 239(8): 2573-2584, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35471613

RESUMEN

RATIONALE: Modafinil has been proposed as a potentially effective clinical treatment for neuropsychiatric disorders characterized by cognitive control deficits. However, the precise effects of modafinil, particularly on brain network functions, are not completely understood. OBJECTIVES: To address this gap, we examined the effects of modafinil on resting-state brain activity in 30 healthy adults using microstate analysis. Electroencephalographic (EEG) microstates are discrete voltage topographies generated from resting-state network activity. METHODS: Using a placebo-controlled, within-subjects design, we examined changes to microstate parameters following placebo (0 mg), low (100 mg), and high (200 mg) modafinil doses. We also examined the functional significance of these microstates via associations between microstate parameters and event-related potential indexes of conflict monitoring and automatic error processing (N2 and error-related negativity) and behavioral responses (accuracy and RT) from a subsequent flanker interference task. RESULTS: Five microstates emerged following each treatment condition, including four canonical microstates (A-D). Modafinil increased microstate C proportion and occurrence regardless of dose, relative to placebo. Modafinil also decreased microstate A proportion and microstate B proportion and occurrence relative to placebo. These modafinil-related changes in microstate parameters were not associated with similar changes in flanker ERPs or behavior. Finally, modafinil made transitions between microstates A and B less likely and transitions from A and B to C more likely. CONCLUSIONS: Previous fMRI work has correlated microstates A and B with auditory and visual networks and microstate C with a salience network. Thus, our results suggest modafinil may deactivate large-scale sensory networks in favor of a higher order functional network during resting-state in healthy adults.


Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Adulto , Encéfalo/fisiología , Electroencefalografía , Humanos , Modafinilo/farmacología
14.
Curr Top Behav Neurosci ; 58: 355-377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35435644

RESUMEN

Despite the prominence of anhedonic symptoms associated with diverse neuropsychiatric conditions, there are currently no approved therapeutics designed to attenuate the loss of responsivity to previously rewarding stimuli. However, the search for improved treatment options for anhedonia has been reinvigorated by a recent reconceptualization of the very construct of anhedonia, including within the Research Domain Criteria (RDoC) initiative. This chapter will focus on the RDoC Positive Valence Systems construct of reward learning generally and sub-construct of probabilistic reinforcement learning specifically. The general framework emphasizes objective measurement of a subject's responsivity to reward via reinforcement learning under asymmetrical probabilistic contingencies as a means to quantify reward learning. Indeed, blunted reward responsiveness and reward learning are central features of anhedonia and have been repeatedly described in major depression. Moreover, these probabilistic reinforcement techniques can also reveal neurobiological mechanisms to aid development of innovative treatment approaches. In this chapter, we describe how investigating reward learning can improve our understanding of anhedonia via the four RDoC-recommended tasks that have been used to probe sensitivity to probabilistic reinforcement contingencies and how such task performance is disrupted in various neuropsychiatric conditions. We also illustrate how reverse translational approaches of probabilistic reinforcement assays in laboratory animals can inform understanding of pharmacological and physiological mechanisms. Next, we briefly summarize the neurobiology of probabilistic reinforcement learning, with a focus on the prefrontal cortex, anterior cingulate cortex, striatum, and amygdala. Finally, we discuss treatment implications and future directions in this burgeoning area.


Asunto(s)
Anhedonia , Trastorno Depresivo Mayor , Animales , Aprendizaje , Refuerzo en Psicología , Recompensa
15.
Adv Pharmacol ; 93: 243-274, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35341568

RESUMEN

Behavioral pharmacology has been aided significantly by the development of innovative cognitive tasks designed to examine complex behavioral processes in laboratory animals. Performance outcomes under these conditions have provided key metrics of drug action which serve to supplement traditional in vivo assays of physiologic and behavioral effects of psychoactive drugs. This chapter provides a primer of cognitive tasks designed to assay different aspects of complex behavior, including learning, cognitive flexibility, memory, attention, motivation, and impulsivity. Both capstone studies and recent publications are highlighted throughout to illustrate task value for two distinct but often interconnected translational strategies. First, task performance in laboratory animals can be utilized to elucidate how drugs of abuse affect complex behavioral processes. Here, the expectation is that adverse effects on such processes will have predictive relevance to consequences that will be experienced by humans. Second, these same task outcomes can be used to evaluate candidate therapeutics. In this case, the extent to which drug doses with medicinal value perturb task performance can contribute critical information for a more complete safety profile appraisal and advance the process of medications development. Methodological and theoretical considerations are discussed and include an emphasis on determining selectivity in drug action on complex behavioral processes.


Asunto(s)
Conducta Impulsiva , Motivación , Animales , Animales de Laboratorio , Humanos , Psicotrópicos/efectos adversos
16.
J Cogn Neurosci ; 34(5): 864-876, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35195725

RESUMEN

Errors in performance trigger cognitive and neural changes that are implemented to adaptively adjust to fluctuating demands. Error-related alpha suppression (ERAS)-which refers to decreased power in the alpha frequency band after an incorrect response-is thought to reflect cognitive arousal after errors. Much of this work has been correlational, however, and there are no direct investigations into its pharmacological sensitivity. In Study 1 (n = 61), we evaluated the presence and scalp distribution of ERAS in a novel flanker task specifically developed for cross-species assessments. Using this same task in Study 2 (n = 26), which had a placebo-controlled within-subject design, we evaluated the sensitivity of ERAS to placebo (0 mg), low (100 mg), and high (200 mg) doses of modafinil, a wakefulness promoting agent. Consistent with previous work, ERAS was maximal at parieto-occipital recording sites in both studies. In Study 2, modafinil did not have strong effects on ERAS (a significant Accuracy × Dose interaction emerged, but drug-placebo differences did not reach statistical significance after correction for multiple comparisons and was absent after controlling for accuracy rate). ERAS was correlated with accuracy rates in both studies. Thus, modafinil did not impact ERAS as hypothesized, and findings indicate ERAS may reflect an orienting response to infrequent events.


Asunto(s)
Compuestos de Bencidrilo , Cuero Cabelludo , Nivel de Alerta , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Método Doble Ciego , Humanos , Modafinilo/farmacología , Modafinilo/uso terapéutico , Vigilia
17.
Biomedicines ; 10(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35203607

RESUMEN

There is substantial evidence that cholinergic system function impairment plays a significant role in many central nervous system (CNS) disorders. During the past three decades, muscarinic receptors (mAChRs) have been implicated in various pathologies and have been prominent targets of drug-design efforts. However, due to the high sequence homology of the orthosteric binding site, many drug candidates resulted in limited clinical success. Although several advances in treating peripheral pathologies have been achieved, targeting CNS pathologies remains challenging for researchers. Nevertheless, significant progress has been made in recent years to develop functionally selective orthosteric and allosteric ligands targeting the mAChRs with limited side effect profiles. This review highlights past efforts and focuses on recent advances in drug design targeting these receptors for Alzheimer's disease (AD), schizophrenia (SZ), and depression.

18.
Neuropsychopharmacology ; 47(3): 767-775, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34921225

RESUMEN

Exposure to early-life adversity (ELA) is associated with several neuropsychiatric conditions, including major depressive disorder, yet causality is difficult to establish in humans. Recent work in rodents has implicated impaired reward circuit signaling in anhedonic-like behavior after ELA exposure. Anhedonia, the lack of reactivity to previously rewarding stimuli, is a transdiagnostic construct common to mental illnesses associated with ELA. Here, we employed an assay of reward responsiveness validated across species, the Probabilistic Reward Task (PRT). In the PRT, healthy participants reliably develop a response bias toward the more richly rewarded stimulus, whereas participants with anhedonia exhibit a blunted response bias that correlates with current and future anhedonia. In a well-established model of ELA that generates a stressful, chaotic, and unpredictable early-life environment, ELA led to blunted response biases in the PRT in two separate cohorts, recapitulating findings in humans with anhedonia. The same ELA rats had blunted sucrose preference, further supporting their anhedonic-like phenotypes. Probing the aspects of ELA that might provoke these deficits, we quantified the unpredictability of dam/pup interactions using entropy measures and found that the unpredictability of maternal care was significantly higher in the ELA groups in which PRT and sucrose preference reward deficits were present later in life. Taken together, these data position the PRT, established in clinical patient populations, as a potent instrument to assess the impact of ELA on the reward circuit across species. These findings also implicate the unpredictability of maternal signals during early life as an important driver of reward sensitivity deficits.


Asunto(s)
Trastorno Depresivo Mayor , Anhedonia , Animales , Trastorno Depresivo Mayor/psicología , Humanos , Ratas , Recompensa
19.
Life Sci Space Res (Amst) ; 30: 9-23, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34281669

RESUMEN

Studies in rodents suggest that exposure to distinct spaceflight stressors (e.g., space radiation, isolation/confinement, microgravity) may have a profound impact on an astronaut's ability to perform both simple and complex tasks related to neurocognitive performance, central nervous system (CNS) and vestibular/sensorimotor function. However, limited information is currently available on how combined exposure to the spaceflight stressors will impact CNS-related neurocognitive and neurobiological function in-flight and, as well, terrestrial risk of manifesting neurodegenerative conditions when astronauts return to earth. This information gap has significantly hindered our ability to realistically estimate spaceflight hazard risk to the CNS associated with deep space exploration. Notwithstanding a significant body of work with rodents, there have been very few direct investigations of the impact of these spaceflight stressors in combination and, to our knowledge, no such investigations using nonhuman primate (NHP) animal models. In view of the widely-recognized translational value of NHP data in advancing biomedical discoveries, this research deficiency limits our understanding regarding the impact of individual and combined spaceflight stressors on CNS-related neurobiological function. In this review, we address this knowledge gap by conducting a systematic and comprehensive evaluation of existing research on the impact of exposure to spaceflight stressors on NHP CNS-related function. This review is structured to: a) provide an overarching view of the past contributions of NHPs to spaceflight research as well as the strengths, limitations, and translational value of NHP research in its own right and within the existing context of NASA-relevant rodent research; b) highlight specific conclusions based on the published literature and areas needed for future endeavors; c) describe critical research gaps and priorities in NHP research to facilitate NASA's efforts to bridge the key knowledge gaps that currently exist in translating rodent data to humans; and d) provide a roadmap of recommendations for NASA regarding the availability, validity, strengths, and limitations of various NHP models for future targeted research.


Asunto(s)
Vuelo Espacial , Ingravidez , Animales , Astronautas , Humanos , Modelos Animales , Primates
20.
Sci Rep ; 11(1): 11665, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083596

RESUMEN

Challenges in therapeutics development for neuropsychiatric disorders can be attributed, in part, to a paucity of translational models capable of capturing relevant phenotypes across clinical populations and laboratory animals. Touch-sensitive procedures are increasingly used to develop innovative animal models that better align with testing conditions used in human participants. In addition, advances in electrophysiological techniques have identified neurophysiological signatures associated with characteristics of neuropsychiatric illness. The present studies integrated these methodologies by developing a rat flanker task with electrophysiological recordings based on reverse-translated protocols used in human electroencephalogram (EEG) studies of cognitive control. Various touchscreen-based stimuli were evaluated for their ability to efficiently gain stimulus control and advance to flanker test sessions. Optimized stimuli were then examined for their elicitation of prototypical visual evoked potentials (VEPs) across local field potential (LFP) wires and EEG skull screws. Of the stimuli evaluated, purple and green photographic stimuli were associated with efficient training and expected flanker interference effects. Orderly stimulus-locked outcomes were also observed in VEPs across LFP and EEG recordings. These studies along with others verify the feasibility of concurrent electrophysiological recordings and rodent touchscreen-based cognitive testing and encourage future use of this integrated approach in therapeutics development.


Asunto(s)
Electroencefalografía , Pruebas Neuropsicológicas , Roedores , Animales , Análisis de Datos , Discriminación en Psicología , Electroencefalografía/métodos , Potenciales Evocados Visuales , Femenino , Masculino , Estimulación Luminosa , Ratas , Reproducibilidad de los Resultados , Factores Sexuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA