Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202400798, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38623849

RESUMEN

Many odors, like perfumes, are complex mixtures of chiral and achiral molecules where the cost-efficient (enantio-)selective sensing represents a major technical challenge. Here, we present a colorimetric sensor array of surface-mounted metal-organic-framework (SURMOF) films in Fabry-Pérot (FP) cavities. The optical properties of the FP-SURMOF films with different chiral and achiral structures are affected by the (enantio-)selective adsorption of the analytes in the SURMOF pores, resulting in different responses to the analyte molecules. The read-out of the sensor array is performed by the digital camera of a common smartphone, where the RGB values are determined. By analyzing the sensor array data with simple machine learning algorithms, the analytes are discriminated. After demonstrating the enantioselective response for a pair of pure chiral odor molecules, we apply the sensor array to detect and discriminate a large number (16) of common commercial perfumes and eau de toilettes. While our untrained human nose is not able to discriminate all perfumes, the presented colorimetric sensor array can classify all perfumes with great classification accuracy. Moreover, the sensor array was used to identify unlabeled samples correctly. We foresee such an FP-chiral-SURMOF-based sensor array as a powerful approach toward inexpensive selective odors sensing applications.

2.
Angew Chem Int Ed Engl ; 62(20): e202218052, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36808409

RESUMEN

Molecular machines and responsive materials open a plethora of new opportunities in nanotechnology. We present an oriented crystalline array of diarylethene (DAE)-based photoactuators, arranged in a way to yield an anisotropic response. The DAE units are assembled, together with a secondary linker, into a monolithic surface-mounted metal-organic framework (SURMOF) film. By Infrared (IR) and UV/Vis spectroscopy as well as by synchrotron X-ray diffraction, we show that the light-induced extension changes of the molecular DAE linkers multiply to yield mesoscopic and anisotropic length changes. Due to the special architecture and substrate-bonding of the SURMOF, these length changes are transferred to the macroscopic scale, leading to the bending of a cantilever and performing work. This research shows the potential of assembling light-powered molecules into SURMOFs to yield photoactuators with a directed response, presenting a path to advanced actuators.

3.
J Am Chem Soc ; 143(18): 7059-7068, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33915047

RESUMEN

The ability to dynamically control chirality remains a grand challenge in chemistry. Although many molecules possess chiral isomers, lacking their isolation, for instance during photoisomerization, results in racemic mixtures with suppressed enantiospecific chiral properties. Here, we present a nanoporous solid in which chirality and enantioselective enrichment is induced by circularly polarized light (CPL). The material is based on photoswitchable fluorinated azobenzenes attached to the scaffold of a crystalline metal-organic framework (MOF). The azobenzene undergoes trans-to-cis-photoisomerization upon irradiation with green light and reverts back to trans upon violet light. While each moiety in cis conformation is chiral, we show the trans isomer also possesses a nonplanar, chiral conformation. During photoisomerization with unpolarized light, no enantiomeric enrichment is observed and both isomers, R- and S-cis as well as R- and S-trans, respectively, are formed in identical quantities. In contrast, CPL causes chiral photoresolution, resulting in an optically active material. Right-CPL selectively excites R-cis and R-trans enantiomers, producing a MOF with enriched S-enantiomers, and vice versa. The induction of optical activity is reversible and only depends on the light-handedness. As shown by first-principle DFT calculations, while both, trans and cis, are stabilized in nonplanar, chiral conformations in the MOF, the trans isomer adopts a planar, achiral form in solution, as verified experimentally. This shows that the chiral photoresolution is enabled by the linker reticulation in the MOF. Our study demonstrates the induction of chirality and optical activity in solid materials by CPL and opens new opportunities for chiral resolution and information storage with CPL.

4.
ACS Appl Mater Interfaces ; 13(18): 21166-21174, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33905243

RESUMEN

Metal-organic framework (MOF)-based separators in Li-ion batteries (LIBs) have the potential to improve the battery performance. The mobility and conduction of lithium and organic ionic liquids (ILs) in these materials acting as (quasi) solid-state electrolytes are crucial for the battery power output. Here, we investigate the mobility of a Li-based IL in MOF nanopores and unveil the details of the conduction mechanism by molecular dynamics (MD) simulations. A complex conductivity depending on the Li-IL loading and on the IL composition is observed. Most importantly, the presence of Li prevents the collapse of the conductivity at high IL loadings. The fully atomistic MD simulations including guest-guest and guest-host interactions elucidate the competing mechanisms: Li follows a Grotthuss-like conduction mechanism with large mobility. While at small pore fillings, the Li conduction is limited by the large distance between the anions facilitating the Grotthuss-like conduction; the conduction at high pore fillings is governed by field-induced concentration inhomogeneities. Because of the small MOF pore windows, which hinders the simultaneous passage of the large IL cations and anions in opposite directions, the IL shows field-induced MOF pore blocking and ion bunching. The regions of low anion concentration and high cation concentration represent barriers for Li, decreasing its mobility. In comparison to Li-free IL, the IL bunching effect is attenuated by the formation of charge-neutral Li-anion complexes, resulting in a tremendously increased conductivity at maximum pore filling. The exploitation of this mechanism may enhance the development of advanced batteries based on IL and nanoporous separators.

5.
ACS Appl Mater Interfaces ; 12(27): 30972-30979, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32573186

RESUMEN

1-Hexyne monomers were potentiostatically electropolymerized upon confinement in 1D channels of a surface-mounted metal-organic framework Cu(BDC) (SURMOF-2). A layer-by-layer deposition method allowed for SURMOF depostition on substrates with prepatterned electrodes, making it possible to characterize electrical conductivity in situ, i.e., without having to delaminate the conductive polymer thin film. Successful polymerization was evidenced by mass spectroscopy, and the electrical measurements demonstrated an increase of the electrical conductivity of the MOF material by 8 orders of magnitude. Extensive DFT calculations revealed that the final conductivity is limited by electron hopping between the conductive oligomers.

6.
Chem Commun (Camb) ; 55(60): 8776-8779, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31099346

RESUMEN

A chiral photoswitchable nanoporous material with remote-controllable enantioselective adsorption capacity is presented. This metal-organic framework possesses both homochiral d-camphoric acid and light-responsive azobenzene moieties. Although the structure at the chiral moieties is unaffected, the trans-cis-azobenzene-photoisomerization changes the pore environment and, thus, switches the enantioselective adsorption behavior of the homochiral MOF.

7.
Nano Lett ; 19(3): 2114-2120, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30830791

RESUMEN

Room-temperature ionic liquids (ILs) are a unique, novel class of designer solvents and materials with exclusive properties, attracting substantial attention in fields like energy storage and supercapacitors as well as in ion-based signal processing and electronics. For most applications, ILs need to be incorporated or embedded in solid materials like porous hosts. We investigate the dynamic structure of ILs embedded in well-defined pores of metal-organic frameworks (MOFs). The experimental data combined with molecular dynamics simulations unveil astonishing dynamic properties of the IL in the MOF nanoconfinement. At low IL loadings, the ions drift in the pores along the electric field, whereas at high IL loadings, collective field-induced interactions of the cations and anions lead to blocking the transport, thus suppressing the ionic mobility and tremendously decreasing the conductivity. The mutual pore blockage causes immobilized ions in the pores, resulting in a highly inhomogeneous IL density and bunched-up ions at the clogged pores. These results provide novel molecular-level insights into the dynamics of ILs in nanoconfinement, significantly enhancing the tunability of IL material properties.

8.
Angew Chem Int Ed Engl ; 58(4): 1193-1197, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30421842

RESUMEN

Conductive metal-organic frameworks (MOFs) as well as smart, stimuli-responsive MOF materials have attracted considerable attention with respect to advanced applications in energy harvesting and storage as well as in signal processing. Here, the conductance of MOF films of type UiO-67 with embedded photoswitchable nitro-substituted spiropyrans was investigated. Under UV irradiation, the spiropyran (SP) reversibly isomerizes to the open merocyanine (MC) form, a zwitterionic molecule with an extended conjugated π-system. The light-induced SP-MC isomerization allows for remote control over the conductance of the SP@UiO-67 MOF film, and the conductance can be increased by one order of magnitude. This research has the potential to contribute to the development of a new generation of photoelectronic devices based on smart hybrid materials.

9.
Adv Mater ; 30(8)2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29315923

RESUMEN

Proton conducting nanoporous materials attract substantial attention with respect to applications in fuel cells, supercapacitors, chemical sensors, and information processing devices inspired by biological systems. Here, a crystalline, nanoporous material which offers dynamic remote-control over the proton conduction is presented. This is realized by using surface-mounted metal-organic frameworks (SURMOFs) with azobenzene side groups that can undergo light-induced reversible isomerization between the stable trans and cis states. The trans-cis photoisomerization results in the modulation of the interaction between MOF and guest molecules, 1,4-butanediol and 1,2,3-triazole; enabling the switching between the states with significantly increased (trans) and reduced (cis) conductivity. Quantum chemical calculations show that the trans-to-cis isomerization results in the formation of stronger hydrogen bridges of the guest molecules with the azo groups, causing stronger bonding of the guest molecules and, as a result, smaller proton conductivity. It is foreseen that photoswitchable proton-conducting materials may find its application in advanced, remote-controllable chemical sensors, and a variety of devices based on the conductivity of protons or other charged molecules, which can be interfaced with biological systems.

10.
Macromol Rapid Commun ; 39(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28758288

RESUMEN

Metal-organic frameworks (MOFs) are nanoporous, crystalline hybrid materials, which enable various functionalities by incorporating functional organic molecules. By using organic linker molecules that possess photoswitchable azobenzene side groups, the remote control over certain properties was introduced to MOFs. Different MOF materials in the form of powders and thin films have been used to demonstrate the photoswitching. The applications of these stimuli-responsive nanoporous solids range from switching the adsorption capacity of various gases over remote-controlled release of guest molecules to continuously tunable membrane separation of molecular mixtures. A particular focus of this review is the effect of the azobenzene photoswitching on the host-guest interaction, enabling smart applications of the material. Steric hindrance, which may suppress the photoswitching in some MOF structures, is also discussed.


Asunto(s)
Compuestos Azo/química , Estructuras Metalorgánicas/química , Estructura Molecular , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...