Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 29(12): 3224-3232, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38049621

RESUMEN

Cervical cancer burden is high where prophylactic vaccination and screening coverage are low. We demonstrated in a multicenter randomized, double-blind, controlled trial that single-dose human papillomavirus (HPV) vaccination had high vaccine efficacy (VE) against persistent infection at 18 months in Kenyan women. Here, we report findings of this trial through 3 years of follow-up. Overall, 2,275 healthy women aged 15-20 years were recruited and randomly assigned to receive bivalent (n = 760), nonavalent (n = 758) or control (n = 757) vaccine. The primary outcome was incident-persistent vaccine type-specific cervical HPV infection. The primary evaluation was superiority analysis in the modified intention-to-treat (mITT) HPV 16/18 and HPV 16/18/31/33/45/52/58 cohorts. The trial met its prespecified end points of vaccine type-specific persistent HPV infection. A total of 75 incident-persistent infections were detected in the HPV 16/18 mITT cohort: 2 in the bivalent group, 1 in the nonavalent group and 72 in the control group. Nonavalent VE was 98.8% (95% CI 91.3-99.8%, P < 0.0001) and bivalent VE was 97.5% (95% CI 90.0-99.4%, P < 0.0001). Overall, 89 persistent infections were detected in the HPV 16/18/31/33/45/52/58 mITT cohort: 5 in the nonavalent group and 84 in the control group; nonavalent VE was 95.5% (95% CI 89.0-98.2%, P < 0.0001). There were no vaccine-related severe adverse events. Three years after vaccination, single-dose HPV vaccination was highly efficacious, safe and conferred durable protection. ClinicalTrials.gov no. NCT03675256 .


Asunto(s)
Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Kenia/epidemiología , Papillomaviridae , Infecciones por Papillomavirus/prevención & control , Vacunas contra Papillomavirus/efectos adversos , Infección Persistente , Neoplasias del Cuello Uterino/prevención & control , Vacunación/métodos , Método Doble Ciego
2.
Nat Med ; 27(10): 1718-1724, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34621054

RESUMEN

Human immunodeficiency virus (HIV)-1-specific broadly neutralizing monoclonal antibodies are currently under development to treat and prevent HIV-1 infection. We performed a single-center, randomized, double-blind, dose-escalation, placebo-controlled trial of a single administration of the HIV-1 V3-glycan-specific antibody PGT121 at 3, 10 and 30 mg kg-1 in HIV-uninfected adults and HIV-infected adults on antiretroviral therapy (ART), as well as a multicenter, open-label trial of one infusion of PGT121 at 30 mg kg-1 in viremic HIV-infected adults not on ART (no. NCT02960581). The primary endpoints were safety and tolerability, pharmacokinetics (PK) and antiviral activity in viremic HIV-infected adults not on ART. The secondary endpoints were changes in anti-PGT121 antibody titers and CD4+ T-cell count, and development of HIV-1 sequence variations associated with PGT121 resistance. Among 48 participants enrolled, no treatment-related serious adverse events, potential immune-mediated diseases or Grade 3 or higher adverse events were reported. The most common reactions among PGT121 recipients were intravenous/injection site tenderness, pain and headache. Absolute and relative CD4+ T-cell counts did not change following PGT121 infusion in HIV-infected participants. Neutralizing anti-drug antibodies were not elicited. PGT121 reduced plasma HIV RNA levels by a median of 1.77 log in viremic participants, with a viral load nadir at a median of 8.5 days. Two individuals with low baseline viral loads experienced ART-free viral suppression for ≥168 days following antibody infusion, and rebound viruses in these individuals demonstrated full or partial PGT121 sensitivity. The trial met the prespecified endpoints. These data suggest that further investigation of the potential of antibody-based therapeutic strategies for long-term suppression of HIV is warranted, including in individuals off ART and with low viral load.


Asunto(s)
Antivirales/administración & dosificación , Anticuerpos ampliamente neutralizantes/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Adulto , Terapia Antirretroviral Altamente Activa , Antivirales/inmunología , Antivirales/farmacocinética , Anticuerpos ampliamente neutralizantes/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/virología , Método Doble Ciego , Femenino , Proteína gp120 de Envoltorio del VIH/antagonistas & inhibidores , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/genética , Infecciones por VIH/patología , Infecciones por VIH/virología , VIH-1/patogenicidad , Humanos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/inmunología , Placebos , Carga Viral/efectos de los fármacos , Carga Viral/inmunología , Adulto Joven
3.
JAMA ; 325(15): 1535-1544, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33704352

RESUMEN

Importance: Control of the global COVID-19 pandemic will require the development and deployment of safe and effective vaccines. Objective: To evaluate the immunogenicity of the Ad26.COV2.S vaccine (Janssen/Johnson & Johnson) in humans, including the kinetics, magnitude, and phenotype of SARS-CoV-2 spike-specific humoral and cellular immune responses. Design, Setting, and Participants: Twenty-five participants were enrolled from July 29, 2020, to August 7, 2020, and the follow-up for this day 71 interim analysis was completed on October 3, 2020; follow-up to assess durability will continue for 2 years. This study was conducted at a single clinical site in Boston, Massachusetts, as part of a randomized, double-blind, placebo-controlled phase 1 clinical trial of Ad26.COV2.S. Interventions: Participants were randomized to receive 1 or 2 intramuscular injections with 5 × 1010 viral particles or 1 × 1011 viral particles of Ad26.COV2.S vaccine or placebo administered on day 1 and day 57 (5 participants in each group). Main Outcomes and Measures: Humoral immune responses included binding and neutralizing antibody responses at multiple time points following immunization. Cellular immune responses included immunospot-based and intracellular cytokine staining assays to measure T-cell responses. Results: Twenty-five participants were randomized (median age, 42; age range, 22-52; 52% women, 44% male, 4% undifferentiated), and all completed the trial through the day 71 interim end point. Binding and neutralizing antibodies emerged rapidly by day 8 after initial immunization in 90% and 25% of vaccine recipients, respectively. By day 57, binding and neutralizing antibodies were detected in 100% of vaccine recipients after a single immunization. On day 71, the geometric mean titers of spike-specific binding antibodies were 2432 to 5729 and the geometric mean titers of neutralizing antibodies were 242 to 449 in the vaccinated groups. A variety of antibody subclasses, Fc receptor binding properties, and antiviral functions were induced. CD4+ and CD8+ T-cell responses were induced. Conclusion and Relevance: In this phase 1 study, a single immunization with Ad26.COV2.S induced rapid binding and neutralization antibody responses as well as cellular immune responses. Two phase 3 clinical trials are currently underway to determine the efficacy of the Ad26.COV2.S vaccine. Trial Registration: ClinicalTrials.gov Identifier: NCT04436276.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunidad Celular , Inmunogenicidad Vacunal , Adulto , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Método Doble Ciego , Femenino , Humanos , Inmunidad Humoral , Masculino , Persona de Mediana Edad , Potencia de la Vacuna , Adulto Joven
4.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587687

RESUMEN

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Asunto(s)
Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Adenoviridae/inmunología , Adulto , Animales , Método Doble Ciego , Femenino , Humanos , Masculino , Ratones , Estados Unidos , Virus Zika/inmunología , Infección por el Virus Zika/inmunología
5.
Lancet Infect Dis ; 20(9): 1061-1070, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32618279

RESUMEN

BACKGROUND: The development of an effective vaccine against Zika virus remains a public health priority. A Zika purified inactivated virus (ZPIV) vaccine candidate has been shown to protect animals against Zika virus challenge and to be well tolerated and immunogenic in humans up to 8 weeks of follow-up. We aimed to assess the safety and immunogenicity of ZPIV in humans up to 52 weeks of follow-up when given via standard or accelerated vaccination schedules. METHODS: We did a single-centre, double-blind, randomised controlled, phase 1 trial in healthy adults aged 18-50 years with no known history of flavivirus vaccination or infection at Beth Israel Deaconess Medical Center in Boston, MA, USA. Participants were sequentially enrolled into one of three groups: ZPIV given at weeks 0 and 4 (standard regimen), weeks 0 and 2 (accelerated regimen), or week 0 alone (single-dose regimen). Within each group, participants were randomly assigned using a computer-generated randomisation schedule to receive an intramuscular injection of 5 µg ZPIV or saline placebo, in a ratio of 5:1. The sponsor, clinical staff, investigators, participants, and laboratory personnel were masked to treatment assignment. The primary endpoint was safety up to day 364 after final dose administration, and secondary endpoints were proportion of participants with positive humoral immune responses (50% microneutralisation titre [MN50] ≥100) and geometric mean MN50 at observed peak response (ie, the highest neutralising antibody level observed for an individual participant across all timepoints) and week 28. All participants who received at least one dose of ZPIV or placebo were included in the safety population; the analysis of immunogenicity at observed peak included all participants who received at least one dose of ZPIV or placebo and had any adverse events or immunogenicity data after dosing. The week 28 immunogenicity analysis population consisted of all participants who received ZPIV or placebo and had immunogenicity data available at week 28. This trial is registered with ClinicalTrials.gov, NCT02937233. FINDINGS: Between Dec 8, 2016, and May 17, 2017, 12 participants were enrolled into each group and then randomly assigned to vaccine (n=10) or placebo (n=2). There were no serious or grade 3 treatment-related adverse events. The most common reactions among the 30 participants who received the vaccine were injection-site pain (24 [80%]), fatigue (16 [53%]), and headache (14 [46%]). A positive response at observed peak titre was detected in all participants who received ZPIV via the standard regimen, in eight (80%) of ten participants who received ZPIV via the accelerated regimen, and in none of the ten participants who received ZPIV via the single-dose regimen. The geometric mean of all individual participants' observed peak values was 1153·9 (95% CI 455·2-2925·2) in the standard regimen group, 517·7 (142·9-1875·6) in the accelerated regimen group, and 6·3 (3·7-10·8) in the single-dose regimen group. At week 28, a positive response was observed in one (13%) of eight participants who received ZPIV via the standard regimen and in no participant who received ZPIV via the accelerated (n=7) or single-dose (n=10) regimens. The geomteric mean titre (GMT) at this timepoint was 13·9 (95% CI 3·5-55·1) in the standard regimen group and 6·9 (4·0-11·9) in the accelerated regimen group; antibody titres were undetectable at 28 weeks in participants who received ZPIV via the single-dose regimen. For all vaccine schedules, GMTs peaked 2 weeks after the final vaccination and declined to less than 100 by study week 16. There was no difference in observed peak GMTs between the standard 4-week and the accelerated 2-week boosting regimens (p=0·4494). INTERPRETATION: ZPIV was safe and well tolerated in humans up to 52 weeks of follow-up. ZPIV immunogenicity required two doses and was not durable. Additional studies of ZPIV to optimise dosing schedules are ongoing. FUNDING: The Henry M Jackson Foundation for the Advancement of Military Medicine.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Adolescente , Adulto , Femenino , Humanos , Esquemas de Inmunización , Masculino , Persona de Mediana Edad , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/efectos adversos , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Adulto Joven
6.
Lancet HIV ; 7(6): e410-e421, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32078815

RESUMEN

BACKGROUND: Current efficacy studies of a mosaic HIV-1 prophylactic vaccine require four vaccination visits over one year, which is a complex regimen that could prove challenging for vaccine delivery at the community level, both for recipients and clinics. In this study, we evaluated the safety, tolerability, and immunogenicity of shorter, simpler regimens of trivalent Ad26.Mos.HIV expressing mosaic HIV-1 Env/Gag/Pol antigens combined with aluminium phosphate-adjuvanted clade C gp140 protein. METHODS: We did this randomised, double-blind, placebo-controlled phase 1 trial (IPCAVD010/HPX1002) at Beth Israel Deaconess Medical Center in Boston, MA, USA. We included healthy, HIV-uninfected participants (aged 18-50 years) who were considered at low risk for HIV infection and had not received any vaccines in the 14 days before study commencement. We randomly assigned participants via a computer-generated randomisation schedule and interactive web response system to one of three study groups (1:1:1) testing different regimens of trivalent Ad26.Mos.HIV (5 × 1010 viral particles per 0·5 mL) combined with 250 µg adjuvanted clade C gp140 protein. They were then assigned to treatment or placebo subgroups (5:1) within each of the three main groups. Participants and investigators were masked to treatment allocation until the end of the follow-up period. Group 1 received Ad26.Mos.HIV alone at weeks 0 and 12 and Ad26.Mos.HIV plus adjuvanted gp140 at weeks 24 and 48. Group 2 received Ad26.Mos.HIV plus adjuvanted gp140 at weeks 0, 12, and 24. Group 3 received Ad26.Mos.HIV alone at week 0 and Ad26.Mos.HIV plus adjuvanted gp140 at weeks 8 and 24. Participants in the control group received 0·5 mL of 0·9% saline. All study interventions were administered intramuscularly. The primary endpoints were Env-specific binding antibody responses at weeks 28, 52, and 72 and safety and tolerability of the vaccine regimens for 28 days after the injection. All participants who received at least one vaccine dose or placebo were included in the safety analysis; immunogenicity was analysed using the per-protocol population. The IPCAVD010/HPX1002 trial is registered with ClinicalTrials.gov, NCT02685020. We also did a parallel preclinical study in rhesus monkeys to test the protective efficacy of the shortened group 3 regimen. FINDINGS: Between March 7, 2016, and Aug 19, 2016, we randomly assigned 36 participants to receive at least one dose of study vaccine or placebo, ten to each vaccine group and two to the corresponding placebo group. 30 (83%) participants completed the full study, and six (17%) discontinued it prematurely because of loss to follow-up, withdrawal of consent, investigator decision, and an unrelated death from a motor vehicle accident. The two shortened regimens elicited comparable antibody titres against autologous clade C Env at peak immunity to the longer, 12-month regimen: geometric mean titre (GMT) 41 007 (95% CI 17 959-93 636) for group 2 and 49 243 (29 346-82 630) for group 3 at week 28 compared with 44 590 (19 345-102 781) for group 1 at week 52). Antibody responses remained increased (GMT >5000) in groups 2 and 3 at week 52 but were highest in group 1 at week 72. Antibody-dependent cellular phagocytosis, Env-specific IgG3, tier 1A neutralising activity, and broad cellular immune responses were detected in all groups. All vaccine regimens were well tolerated. Mild-to-moderate pain or tenderness at the injection site was the most commonly reported solicited local adverse event, reported by 28 vaccine recipients (93%) and two placebo recipients (33%). Grade 3 solicited systemic adverse events were reported by eight (27%) vaccine recipients and no placebo recipients; the most commonly reported grade 3 systemic symptoms were fatigue, myalgia, and chills. The shortened group 3 regimen induced comparable peak immune responses in 30 rhesus monkeys as in humans and resulted in an 83% (95% CI 38·7-95, p=0·004 log-rank test) reduction in per-exposure acquisition risk after six intrarectal challenges with SHIV-SF162P3 at week 54, more than 6 months after final vaccination. INTERPRETATION: Short, 6-month regimens of a mosaic HIV-1 prophylactic vaccine elicited robust HIV-specific immune responses that were similar to responses elicited by a longer, 12-month schedule. Preclinical data showed partial protective efficacy of one of the short vaccine regimens in rhesus monkeys. Further clinical studies are required to test the suitability of the shortened vaccine regimens in humans. Such shortened regimens would be valuable to increase vaccine delivery at the community level, particularly in resource-limited settings. FUNDING: Ragon Institute (Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University; Cambridge, MA, USA) and Janssen Vaccines & Prevention (Leiden, Netherlands).


Asunto(s)
Vacunas contra el SIDA/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Infecciones por VIH/prevención & control , Macaca mulatta/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Vacunas contra el SIDA/inmunología , Adyuvantes Inmunológicos/efectos adversos , Adyuvantes Inmunológicos/química , Adulto , Animales , Método Doble Ciego , Femenino , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/inmunología , VIH-1/inmunología , Humanos , Esquemas de Inmunización , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Factores de Tiempo , Adulto Joven , Productos del Gen env del Virus de la Inmunodeficiencia Humana/efectos adversos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...