Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur Phys J A Hadron Nucl ; 60(7): 147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220206

RESUMEN

The absolute mass of 84 Sr was determined using the phase-imaging ion-cyclotron-resonance technique with the JYFLTRAP double Penning trap mass spectrometer. A more precise value for the mass of 84 Sr is essential for providing potential indications of physics beyond the Standard Model through high-precision isotope shift measurements of Sr atomic transition frequencies. The mass excess of 84 Sr was refined to be - 80649.229 ( 37 ) k e V / c 2 from high-precision cyclotron-frequency-ratio measurements with a relative precision of 4.8 × 10 - 10 . The obtained mass-excess value is in agreement with the adopted value in the Atomic Mass Evaluation 2020, but is 30 times more precise. With this new value, we confirm the previously observed nonlinearity in the study of the isotope shift of strontium. Moreover, the double-beta ( 2 ß + ) decay Q value of 84 Sr was directly determined to be 1790.115(37) keV, and the precision was improved by a factor of 30.

2.
Nat Commun ; 14(1): 5961, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749147

RESUMEN

The observation of a weak proton-emission branch in the decay of the 3174-keV 53mCo isomeric state marked the discovery of proton radioactivity in atomic nuclei in 1970. Here we show, based on the partial half-lives and the decay energies of the possible proton-emission branches, that the exceptionally high angular momentum barriers, [Formula: see text] and [Formula: see text], play a key role in hindering the proton radioactivity from 53mCo, making them very challenging to observe and calculate. Indeed, experiments had to wait decades for significant advances in accelerator facilities and multi-faceted state-of-the-art decay stations to gain full access to all observables. Combining data taken with the TASISpec decay station at the Accelerator Laboratory of the University of Jyväskylä, Finland, and the ACTAR TPC device on LISE3 at GANIL, France, we measured their branching ratios as bp1 = 1.3(1)% and bp2 = 0.025(4)%. These results were compared to cutting-edge shell-model and barrier penetration calculations. This description reproduces the order of magnitude of the branching ratios and partial half-lives, despite their very small spectroscopic factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA