Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nat Rev Cancer ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698125
2.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585884

RESUMEN

Spermatogonial stem cell (SSC) acquisition of meiotogenetic state during puberty to produce genetically diverse gametes is blocked by drugs collectively referred as 'puberty blocker' (PB). Investigating the impact of PB on juvenile SSC state and function is challenging due to limited tissue access and clinical data. Herein, we report largest clinically annotated juvenile testicular biorepository with all children with gender dysphoria on chronic PB treatment highlighting shift in pediatric patient demography in US. At the tissue level, we report mild-to-severe sex gland atrophy in PB treated children. We developed most extensive integrated single-cell RNA dataset to date (>100K single cells; 25 patients), merging both public and novel (52 month PB-treated) datasets, alongside innovative computational approach tailed for germ cells and evaluated the impact of PB and aging on SSC. We report novel constitutional ranges for each testicular cell type across the entire age spectrum, distinct effects of treatments on prepubertal vs adult SSC, presence of spermatogenic epithelial cells exhibiting post-meiotic-state, irrespective of age, puberty status, or PB treatment. Further, we defined distinct effects of PB and aging on testicular cell lineage composition, and SSC meiotogenetic state and function. Using single cell data from prepubertal and young adult, we were able to accurately predict sexual maturity based both on overall cell type proportions, as well as on gene expression patterns within each major cell type. Applying these models to a PB-treated patient that they appeared pre-pubertal across the entire tissue. This combined with the noted gland atrophy and abnormalities from the histology data raise a potential concern regarding the complete 'reversibility' and reproductive fitness of SSC. The biorepository, data, and research approach presented in this study provide unique opportunity to explore the impact of PB on testicular reproductive health.

3.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38464033

RESUMEN

The salivary gland (SG) is an essential organ that secretes saliva, which supports versatile oral function throughout life, and is maintained by elusive epithelial stem and progenitor cells (SGSPC). Unfortunately, aging, drugs, autoimmune disorders, and cancer treatments can lead to salivary dysfunction and associated health consequences. Despite many ongoing therapeutic efforts to mediate those conditions, investigating human SGSPC is challenging due to lack of standardized tissue collection, limited tissue access, and inadequate purification methods. Herein, we established a diverse and clinically annotated salivary regenerative biobanking at the Mayo Clinic, optimizing viable salivary cell isolation and clonal assays in both 2D and 3D-matrigel growth environments. Our analysis identified ductal epithelial cells in vitro enriched with SGSPC expressing the CD24/EpCAM/CD49f+ and PSMA- phenotype. We identified PSMA expression as a reliable SGSPC differentiation marker. Moreover, we identified progenitor cell types with shared phenotypes exhibiting three distinct clonal patterns of salivary differentiation in a 2D environment. Leveraging innovative label-free unbiased LC-MS/MS-based single-cell proteomics, we identified 819 proteins across 71 single cell proteome datasets from purified progenitor-enriched parotid gland (PG) and sub-mandibular gland (SMG) cultures. We identified distinctive co-expression of proteins, such as KRT1/5/13/14/15/17/23/76 and 79, exclusively observed in rare, scattered salivary ductal basal cells, indicating the potential de novo source of SGSPC. We also identified an entire class of peroxiredoxin peroxidases, enriched in PG than SMG, and attendant H2O2-dependent cell proliferation in vitro suggesting a potential role for PRDX-dependent floodgate oxidative signaling in salivary homeostasis. The distinctive clinical resources and research insights presented here offer a foundation for exploring personalized regenerative medicine.

4.
Artículo en Inglés | MEDLINE | ID: mdl-37910295

RESUMEN

The eradication of many cancers has proven challenging due to the presence of functionally and genetically heterogeneous clones maintained by rare cancer stem cells (CSCs), which contribute to disease progression, treatment refractoriness, and late relapse. The characterization of functional CSC activity has necessitated the development of modern clonal tracking strategies. This review describes viral-based and CRISPR-Cas9-based cellular barcoding, lineage tracing, and imaging-based approaches. DNA-based cellular barcoding technology is emerging as a powerful and robust strategy that has been widely applied to in vitro and in vivo model systems, including patient-derived xenograft models. This review also highlights the potential of these methods for use in the clinical and drug discovery contexts and discusses the important insights gained from such approaches.

5.
Chemosphere ; 336: 139215, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37336444

RESUMEN

Clethodim is a widely used and approved class II herbicide, with little information about its impact on the reproductive system. Herein, we investigated the male reproductive toxicity of clethodim using a mouse model. GrassOut Max (26% clethodim-equivalent) or analytical grade clethodim (≥90%) were given orally to male mice for 10 d in varying doses. All parameters were assessed at 35 d post-treatment. Significant decrease in testicular weight, decreased germ cell population, elevated DNA damage in testicular cells and lower serum testosterone level was observed post clethodim based herbicide exposure. Epididymal spermatozoa were characterized with significant decrease in motility, elevated DNA damage, abnormal morphology, chromatin immaturity and, decreased acetylated-lysine of sperm proteins. In the testicular cells of clethodim-based herbicide treated mice, the expression of Erß and Gper was significantly higher. Proteomic analysis revealed lower metabolic activity, poor sperm-oocyte binding potential and defective mitochondrial electron transport in spermatozoa of clethodim-based herbicide treated mice. Further, fertilizing ability of spermatozoa was compromised and resulted in defective preimplantation embryo development. Together, our data suggest that clethodim exposure risks male reproductive function and early embryogenesis in Swiss albino mice via endocrine disrupting function.


Asunto(s)
Herbicidas , Embarazo , Animales , Femenino , Ratones , Masculino , Herbicidas/toxicidad , Herbicidas/metabolismo , Proteómica , Semen , Testículo/metabolismo , Espermatozoides/metabolismo , Desarrollo Embrionario
6.
Reprod Sci ; 30(7): 2137-2151, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36690917

RESUMEN

Preimplantation-stage embryos are susceptible to various types of stress when cultured in vitro. Parthenogenetic embryos that lack spermatozoa contribution exhibit aberrant developmental dynamics due to their uniparental origin. Herein, we assessed whether the absence of paternal genome affects the susceptibility of the embryos to pH, osmotic and oxidative stress. Haploid parthenogenetic embryos (HPE) (activated oocytes with 1 pronucleus and 2 polar bodies) were generated by incubating cumulus oocyte complexes of Swiss albino mice with 10 mM strontium chloride for 3 h. Normally fertilized embryos (NFE) (fertilized oocytes with 2 pronuclei and 2 polar bodies) were derived using in vitro fertilization. At 2-cell stage, both HPE and NFE were exposed to various stressors including pH (6.8 to 8.2), osmotic (isotonic, hypotonic, and hypertonic), and peroxidatic oxidative (H2O2, 25 µM) stress. Endoplasmic reticulum stress response, mitochondrial membrane potential, and the rate of blastocyst development were assessed. HPE were susceptible to alteration in the pH that was well tolerated by NFE. Similarly, HPE displayed remarkable difference in sensitivity to hypertonic stress and oxidative stress compared to NFE. The results clearly indicate that the oocytes that develop into embryos in the absence of paternal contribution are more vulnerable to environmental stressors, further highlighting the importance of spermatozoa contribution and/or the ploidy status in mitigating these stressors and towards healthy early embryo development.


Asunto(s)
Peróxido de Hidrógeno , Partenogénesis , Animales , Masculino , Ratones , Haploidia , Partenogénesis/genética , Desarrollo Embrionario , Blastocisto/fisiología , Oocitos/metabolismo , Estrés Oxidativo , Fertilización In Vitro , Concentración de Iones de Hidrógeno
8.
Breast Cancer Res Treat ; 197(2): 277-285, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36380012

RESUMEN

PURPOSE: Breast cancer risk is elevated in pathogenic germline BRCA 1/2 mutation carriers due to compromised DNA quality control. We hypothesized that if immunosurveillance promotes tumor suppression, then normal/benign breast lobules from BRCA carriers may demonstrate higher immune cell densities. METHODS: We assessed immune cell composition in normal/benign breast lobules from age-matched women with progressively increased breast cancer risk, including (1) low risk: 19 women who donated normal breast tissue to the Komen Tissue Bank (KTB) at Indiana University Simon Cancer Center, (2) intermediate risk: 15 women with biopsy-identified benign breast disease (BBD), and (3) high risk: 19 prophylactic mastectomies from women with germline mutations in BRCA1/2 genes. We performed immunohistochemical stains and analysis to quantitate immune cell densities from digital images in up to 10 representative lobules per sample. Median cell counts per mm2 were compared between groups using Wilcoxon rank-sum tests. RESULTS: Normal/benign breast lobules from BRCA carriers had significantly higher densities of immune cells/mm2 compared to KTB normal donors (all p < 0.001): CD8 + 354.4 vs 150.9; CD4 + 116.3 vs 17.7; CD68 + 237.5 vs 57.8; and CD11c + (3.5% vs 0.4% pixels positive). BBD tissues differed from BRCA carriers only in CD8 + cells but had higher densities of CD4 + , CD11c + , and CD68 + immune cells compared to KTB donors. CONCLUSIONS: These preliminary analyses show that normal/benign breast lobules of BRCA mutation carriers contain increased immune cells compared with normal donor breast tissues, and BBD tissues appear overall more similar to BRCA carriers.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/patología , Mama/patología , Mutación de Línea Germinal , Genes BRCA1 , Linfocitos T CD8-positivos/patología , Mutación , Proteína BRCA1/genética
9.
Sci Rep ; 12(1): 18109, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36302811

RESUMEN

The origin of fecal floatation phenomenon remains poorly understood. Following our serendipitous discovery of differences in buoyancy of feces from germ-free and conventional mice, we characterized microbial and physical properties of feces from germ-free and gut-colonized (conventional and conventionalized) mice. The gut-colonization associated differences were assessed in feces using DNA, bacterial-PCR, scanning electron microscopy, FACS, thermogravimetry and pycnometry. Based on the differences in buoyancy of feces, we developed levô in fimo test (LIFT) to distinguish sinking feces (sinkers) of germ-free mice from floating feces (floaters) of gut-colonized mice. By simultaneous tracking of microbiota densities and gut colonization kinetics in fecal transplanted mice, we provide first direct evidence of causal relationship between gut microbial colonization and fecal floatation. Rare discordance in LIFT and microbiota density indicated that enrichment of gasogenic gut colonizers may be necessary for fecal floatation. Finally, fecal metagenomics analysis of 'floaters' from conventional and syngeneic fecal transplanted mice identified colonization of > 10 gasogenic bacterial species including highly prevalent B. ovatus, an anaerobic commensal bacteria linked with flatulence and intestinal bowel diseases. The findings reported here will improve our understanding of food microbial biotransformation and gut microbial regulators of fecal floatation in human health and disease.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Humanos , Animales , Heces/microbiología , Trasplante de Microbiota Fecal , Metagenómica , Bacterias/genética
10.
Endocrinology ; 163(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35776497

RESUMEN

Polycystic ovarian syndrome (PCOS) is a complex health condition associated with metabolic disturbances and infertility. Recent data suggest that the prevalence of PCOS is increasing among women globally, although the etiology of these trends is undefined. Consequently, preclinical models that better reflect the biology of PCOS are urgently needed to facilitate research that can lead to the discovery of prevention strategies or improved management. The existing animal models have several limitations as they do not reflect all the PCOS features metabolically and/or phenotypically. Therefore, there is no clear consensus on the use of appropriate animal model and selection of the most appropriate PCOS-inducing agent. To that end, we have established a Swiss albino mouse model of PCOS based on 3 weeks of daily treatment with letrozole (50 µg/day; intraperitoneal) and dehydroepiandrosterone (DHEA, 6 mg/100 g body weight; subcutaneous) in 5-week-old female mice fed on normal or high-fat diet (HFD). Mice were regularly assessed for body weight, blood glucose, and estrous cycle. Three weeks after drug administration, mice were sacrificed and assessed for blood-based metabolic parameters as well as ovarian function. Our results indicate that DHEA combined with HFD produces changes mimicking those of clinical PCOS, including elevated serum testosterone and luteinizing hormone, dyslipidemia, poor ovarian microenvironment, and development of multiple ovarian cysts, recapitulating cardinal features of PCOS. In comparison, normal diet and/or letrozole produced fewer features of PCOS. The data from the experimental models presented here can improve our understanding of PCOS, a growing concern in women's health.


Asunto(s)
Síndrome del Ovario Poliquístico , Animales , Peso Corporal , Deshidroepiandrosterona , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Letrozol , Ratones , Síndrome del Ovario Poliquístico/metabolismo , Microambiente Tumoral
11.
Oncogene ; 41(33): 4003-4017, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804016

RESUMEN

PFKFB3 (6-phosphofructo-2-kinase) is the rate-limiting enzyme of glycolysis and is overexpressed in several human cancers that are associated with poor prognosis. High PFKFB3 expression in cancer stem cells promotes glycolysis and survival in the tumor microenvironment. Inhibition of PFKFB3 by the glycolytic inhibitor PFK158 and by shRNA stable knockdown in small cell lung carcinoma (SCLC) cell lines inhibited glycolysis, proliferation, spheroid formation, and the expression of cancer stem cell markers CD133, Aldh1, CD44, Sox2, and ABCG2. These factors are also associated with chemotherapy resistance. We found that PFK158 treatment and PFKFB3 knockdown enhanced the ABCG2-interacting drugs doxorubicin, etoposide, and 5-fluorouracil in reducing cell viability under conditions of enriched cancer stem cells (CSC). Additionally, PFKFB3 inhibition attenuated the invasion/migration of SCLC cells by downregulating YAP/TAZ signaling while increasing pLATS1 via activation of pMST1 and NF2 and by reducing the mesenchymal protein expression. PFKFB3 knockdown and PFK158 treatment in a H1048 SCLC cancer stem cell-enriched mouse xenograft model showed significant reduction in tumor growth and weight with reduced expression of cancer stem cell markers, ABCG2, and YAP/TAZ. Our findings identify that PFKFB3 is a novel target to regulate cancer stem cells and its associated therapeutic resistance markers YAP/TAZ and ABCG2 in SCLC models.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , Línea Celular Tumoral , Proliferación Celular , Glucólisis , Vía de Señalización Hippo , Humanos , Neoplasias Pulmonares/patología , Ratones , Fosfofructoquinasa-2/metabolismo , Piridinas , Quinolinas , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Carcinoma Pulmonar de Células Pequeñas/genética , Microambiente Tumoral
12.
Radiat Res ; 198(3): 243-254, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820185

RESUMEN

Regenerative medicine holds promise to cure radiation-induced salivary hypofunction, a chronic side effect in patients with head and neck cancers, therefore reliable preclinical models for salivary regenerative outcome will promote progress towards therapies. In this study, our objective was to develop a cone beam computed tomography-guided precision ionizing radiation-induced preclinical model of chronic hyposalivation using immunodeficient NSGSGM3 mice. Using a Schirmer's test based sialagogue-stimulated saliva flow kinetic measurement method, we demonstrated significant differences in hyposalivation specific to age, sex, precision-radiation dose over a chronic (6 months) timeline. NSG-SMG3 mice tolerated doses from 2.5 Gy up to 7.5 Gy. Interestingly, 5-7.5 Gy had similar effects on stimulated-saliva flow (∼50% reduction in young female at 6 months after precision irradiation over sham-treated controls), however, >5 Gy led to chronic alopecia. Different groups demonstrated characteristic saliva fluctuations early on, but after 5 months all groups nearly stabilized stimulated-saliva flow with low-inter-mouse variation within each group. Further characterization revealed precision-radiation-induced glandular shrinkage, hypocellularization, gland-specific loss of functional acinar and glandular cells in all major salivary glands replicating features of human salivary hypofunction. This model will aid investigation of human cell-based salivary regenerative therapies.


Asunto(s)
Neoplasias de Cabeza y Cuello , Xerostomía , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Lactante , Ratones , Ratones Transgénicos , Saliva , Glándulas Salivales/efectos de la radiación , Xerostomía/etiología
13.
NAR Cancer ; 4(3): zcac022, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35875052

RESUMEN

A problematic feature of many human cancers is a lack of understanding of mechanisms controlling organ-specific patterns of metastasis, despite recent progress in identifying many mutations and transcriptional programs shown to confer this potential. To address this gap, we developed a methodology that enables different aspects of the metastatic process to be comprehensively characterized at a clonal resolution. Our approach exploits the application of a computational pipeline to analyze and visualize clonal data obtained from transplant experiments in which a cellular DNA barcoding strategy is used to distinguish the separate clonal contributions of two or more competing cell populations. To illustrate the power of this methodology, we demonstrate its ability to discriminate the metastatic behavior in immunodeficient mice of a well-established human metastatic cancer cell line and its co-transplanted LRRC15 knockdown derivative. We also show how the use of machine learning to quantify clone-initiating cell (CIC) numbers and their subsequent metastatic progeny generated in different sites can reveal previously unknown relationships between different cellular genotypes and their initial sites of implantation with their subsequent respective dissemination patterns. These findings underscore the potential of such combined genomic and computational methodologies to identify new clonally-relevant drivers of site-specific patterns of metastasis.

14.
Methods Mol Biol ; 2429: 15-26, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507152

RESUMEN

Parthenogenesis is a common reproductive strategy among lower animals that involves the development of an embryo from an oocyte, without any contribution from spermatozoon. This phenomenon does not occur naturally in placental mammals. However, the mammalian oocytes can be artificially activated in vitro using mechanical, electrical, and chemical stimuli which can develop up to the blastocyst stage. In this chapter, we describe the protocol for generating haploid and diploid parthenotes from mouse oocytes using strontium as the activating agent under in vitro conditions.


Asunto(s)
Diploidia , Estroncio , Animales , Blastocisto/fisiología , Femenino , Haploidia , Mamíferos , Ratones , Oocitos/fisiología , Placenta , Embarazo , Estroncio/farmacología
15.
Methods Mol Biol ; 2429: 445-454, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35507180

RESUMEN

Identification of serous tubal intraepithelial carcinomas (STIC) in the fallopian tubes of women who are carriers of germ line pathogenic variants in tubo-ovarian cancer predisposition genes (i.e., BRCA1 and BRCA2) has led to the hypothesis that many high-grade serous carcinomas (HGSC) arise from the fimbria of the fallopian tube. However, the primitive (stem and progenitor) tubal epithelial cells that give rise to STIC and HGSC have not been defined. Further, as putative HGSC precursors are discovered at salpingectomy, the natural history of such lesions is truncated at diagnosis. Thus, living cultures of human fallopian tubes suitable for experimental studies are needed to define and characterize the cellular origin of HGSCs and thereby advance the discovery of improved methods to assess risk, develop effective early detection tests and identify novel prevention approaches. Accordingly, patient-derived tissue-organoids and isolated epithelial stem cell derived-organoids generated from average and high-risk patients are vital resources to understand the developmental biology of aging fallopian tubes and pathogenesis of HGSCs. With a vision to boost HGSC prevention research, we have established state-of-the-art protocols for the collection, processing, storage, distribution, and management of fallopian tube tissues. Here we describe the protocol for preparing these organoids, with emphasis on the key steps that require meticulous attention to achieve success.


Asunto(s)
Cistadenocarcinoma Seroso , Neoplasias de las Trompas Uterinas , Neoplasias Ováricas , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Células Epiteliales/metabolismo , Neoplasias de las Trompas Uterinas/genética , Neoplasias de las Trompas Uterinas/metabolismo , Neoplasias de las Trompas Uterinas/patología , Trompas Uterinas/metabolismo , Femenino , Humanos , Organoides/metabolismo , Neoplasias Ováricas/metabolismo
16.
Nat Commun ; 13(1): 2200, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459234

RESUMEN

Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Transformación Celular Neoplásica/genética , Daño del ADN , Femenino , Humanos , Ratones , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
17.
Cancer Res ; 82(9): 1675-1681, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35260879

RESUMEN

Abundant fibrotic stroma is a typical feature of most solid tumors, and stromal activation promotes oncogenesis, therapy resistance, and metastatic dissemination of cancer cells. Therefore, targeting the tumor stroma in combination with standard-of-care therapies has become a promising therapeutic strategy in recent years. The leucine-rich repeat-containing protein 15 (LRRC15) is involved in cell-cell and cell-matrix interactions and came into focus as a promising anticancer target owing to its overexpression in mesenchymal-derived tumors such as sarcoma, glioblastoma, and melanoma and in cancer-associated fibroblasts in the microenvironment of breast, head and neck, lung, and pancreatic tumors. Effective targeting of LRRC15 using specific antibody-drug conjugates (ADC) has the potential to improve the outcome of patients with LRRC15-positive (LRRC15+) cancers of mesenchymal origin or stromal desmoplasia. Moreover, LRRC15 expression may serve as a predictive biomarker that could be utilized in the preclinical assessment of cancer patients to support personalized clinical outcomes. This review focuses on the role of LRRC15 in cancer, including clinical trials involving LRRC15-targeted therapies, such as the ABBV-085 ADC for patients with LRRC15+ tumors. This review spans perceived knowledge gaps and highlights the clinical avenues that need to be explored to provide better therapeutic outcomes in patients.


Asunto(s)
Fibroblastos Asociados al Cáncer , Glioblastoma , Inmunoconjugados , Sarcoma , Fibroblastos Asociados al Cáncer/metabolismo , Glioblastoma/metabolismo , Humanos , Inmunoconjugados/farmacología , Proteínas de la Membrana/metabolismo , Sarcoma/tratamiento farmacológico , Microambiente Tumoral
18.
Cancer Res ; 82(6): 1038-1054, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654724

RESUMEN

Dissemination of ovarian cancer cells can lead to inoperable metastatic lesions in the bowel and omentum that cause patient death. Here we show that LRRC15, a type-I 15-leucine-rich repeat-containing membrane protein, highly overexpressed in ovarian cancer bowel metastases compared with matched primary tumors and acts as a potent promoter of omental metastasis. Complementary models of ovarian cancer demonstrated that LRRC15 expression leads to inhibition of anoikis-induced cell death and promotes adhesion and invasion through matrices that mimic omentum. Mechanistically, LRRC15 interacted with ß1-integrin to stimulate activation of focal adhesion kinase (FAK) signaling. As a therapeutic proof of concept, targeting LRRC15 with the specific antibody-drug conjugate ABBV-085 in both early and late metastatic ovarian cancer cell line xenograft models prevented metastatic dissemination, and these results were corroborated in metastatic patient-derived ovarian cancer xenograft models. Furthermore, treatment of 3D-spheroid cultures of LRRC15-positive patient-derived ascites with ABBV-085 reduced cell viability. Overall, these data uncover a role for LRRC15 in promoting ovarian cancer metastasis and suggest a novel and promising therapy to target ovarian cancer metastases.Significance: This study identifies that LRRC15 activates ß1-integrin/FAK signaling to promote ovarian cancer metastasis and shows that the LRRC15-targeted antibody-drug conjugate ABBV-085 suppresses ovarian cancer metastasis in preclinical models.


Asunto(s)
Inmunoconjugados , Neoplasias Ováricas , Carcinoma Epitelial de Ovario , Adhesión Celular , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/farmacología , Integrinas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología
19.
Reprod Sci ; 29(1): 7-25, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33289064

RESUMEN

Spermatozoon is a motile cell with a special ability to travel through the woman's reproductive tract and fertilize an oocyte. To reach and penetrate the oocyte, spermatozoa should possess progressive motility. Therefore, motility is an important parameter during both natural and assisted conception. The global trend of progressive reduction in the number and motility of healthy spermatozoa in the ejaculate is associated with increased risk of infertility. Therefore, developing approaches for maintaining or enhancing human sperm motility has been an important area of investigation. In this review we discuss the physiology of sperm, molecular pathways regulating sperm motility, risk factors affecting sperm motility, and the role of sperm motility in fertility outcomes. In addition, we discuss various pharmacological agents and biomolecules that can enhance sperm motility in vitro and in vivo conditions to improve assisted reproductive technology (ART) outcomes. This article opens dialogs to help toxicologists, clinicians, andrologists, and embryologists in understanding the mechanism of factors influencing sperm motility and various management strategies to improve treatment outcomes.


Asunto(s)
Infertilidad Masculina/fisiopatología , Técnicas Reproductivas Asistidas , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Humanos , Masculino
20.
Cell Stem Cell ; 28(3): 367-369, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33667356

RESUMEN

COVID-19 has unfortunately halted lab work, conferences, and in-person networking, which is especially detrimental to researchers just starting their labs. Through social media and our reviewer networks, we met some early-career stem cell investigators impacted by the closures. Here, they introduce themselves and their research to our readers.


Asunto(s)
COVID-19 , Movilidad Laboral , Investigadores , Células Madre , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...