Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Basic Microbiol ; 64(5): e2300599, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308078

RESUMEN

This study examined the impact of Metarhizium anisopliae (Hypocreales: Clavicipitaceae) conidia on the eggs, larvae, pupae, and adults of Spodoptera frugiperda. The results showed that eggs, larvae, pupae, and adults exhibited mortality rates that were dependent on the dose. An increased amount of conidia (1.5 × 109 conidia/mL) was found to be toxic to larvae, pupae, and adults after 9 days of treatment, resulting in a 100% mortality rate in eggs, 98% in larvae, 76% in pupae, and 85% in adults. A study using earthworms as bioindicators found that after 3 days of exposure, M. anisopliae conidia did not cause any harmful effects on the earthworms. In contrast, the chemical treatment (positive control) resulted in 100% mortality at a concentration of 40 ppm. Histopathological studies showed that earthworm gut tissues treated with fungal conidia did not show significant differences compared with those of the negative control. The gut tissues of earthworms treated with monocrotophos exhibited significant damage, and notable differences were observed in the chemical treatment. The treatments with 70 and 100 µg/mL solutions of Eudrilus eugeniae epidermal mucus showed no fungal growth. An analysis of the enzymes at a biochemical level revealed a decrease in the levels of acetylcholinesterase, α-carboxylesterase, and ß-carboxylesterase in S. frugiperda larvae after exposure to fungal conidia. This study found that M. anisopliae is effective against S. frugiperda, highlighting the potential of this entomopathogenic fungus in controlling this agricultural insect pest.


Asunto(s)
Larva , Metarhizium , Control Biológico de Vectores , Spodoptera , Esporas Fúngicas , Animales , Metarhizium/patogenicidad , Spodoptera/microbiología , Spodoptera/efectos de los fármacos , Larva/microbiología , Virulencia , Esporas Fúngicas/patogenicidad , Esporas Fúngicas/crecimiento & desarrollo , Oligoquetos/microbiología , Pupa/microbiología , Óvulo/microbiología
2.
Arch Insect Biochem Physiol ; 114(2): 1-19, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37497800

RESUMEN

Insect pests represent a major threat to human health and agricultural production. With a current over-dependence on chemical insecticides in the control of insect pests, leading to increased chemical resistance in target organisms, as well as side effects on nontarget organisms, the wider environment, and human health, finding alternative solutions is paramount. The employment of entomopathogenic fungi is one such potential avenue in the pursuit of greener, more target-specific methods of insect pest control. To this end, the present study tested the chemical constituents of Metarhizium anisopliae fungi against the unicellular protozoan malaria parasite Plasmodium falciparum, the insect pests Anopheles stephensi Listen, Spodoptera litura Fabricius, and Tenebrio molitor Linnaeus, as well as the nontarget bioindicator species, Eudrilus eugeniae Kinberg. Fungal crude chemical molecules caused a noticeable anti-plasmodial effect against P. falciparum, with IC50 and IC90 values of 11.53 and 7.65 µg/mL, respectively. The crude chemical molecules caused significant larvicidal activity against insect pests, with LC50 and LC90 values of 49.228-71.846 µg/mL in A. stephensi, 32.542-76.510 µg/mL in S. litura, and 38.503-88.826 µg/mL in T. molitor at 24 h posttreatment. Based on the results of the nontarget bioassay, it was revealed that the fungal-derived crude extract exhibited no histopathological sublethal effects on the earthworm E. eugeniae. LC-MS analysis of M. anisopliae-derived crude metabolites revealed the presence of 10 chemical constituents. Of these chemicals, three major chemical constituents, namely, camphor (15.91%), caprolactam (13.27%), and monobutyl phthalate (19.65%), were highlighted for potential insecticidal and anti-malarial activity. The entomopathogenic fungal-derived crude extracts thus represent promising tools in the control of insect pests and malarial parasites.


Asunto(s)
Antimaláricos , Insecticidas , Metarhizium , Humanos , Animales , Insecticidas/farmacología , Insecticidas/química , Control de Insectos , Insectos , Control Biológico de Vectores/métodos
3.
Heliyon ; 9(5): e16133, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37251900

RESUMEN

The present study aims to evaluate the different nanoparticles (Cu NPs, KI NPs, Ag NPs, Bd NPs, and Gv NPs) against 4th instar Spodoptera frugiperda larvae as well as the microbial toxicity, phytotoxicity, and soil pH. Nanoparticles were tested at three concentrations (1000, 10000, and 100000 ppm) using two methods (food dip and larvae dip) against S. frugiperda larvae. Results (from the larval dip method) showed that among the nanoparticles, the KI NPs caused 63%, 98%, and 98% mortality within 5 days in the treatment of 1000, 10000, and 100000 ppm, respectively. After 24 h post treatment, a 1000 ppm concentration showed 95%, 54%, and 94% germination rates in Metarhizium anisopliae, Beauveria bassiana, and Trichoderma harzianum, respectively. The phytotoxicity evaluation clearly showed that NPs did not affect the morphology of the corn plants after the treatment. The soil nutrient analysis results showed that no effect was observed in soil pH or soil nutrients compared to control treatments. The study clearly showed that nanoparticles are caused toxic effect against S. frugiperda larvae.

4.
Heliyon ; 9(4): e14808, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37089397

RESUMEN

In the present study Acacia nilotica seed derived essential oils were tested against Spodoptera litura, Tenebrio molitor, Oxycarenus hyalinipennis, and Aphis fabae, as well as their effects on non-target species Eudrilus eugeniae and Artemia salina at 24 h post treatment. The seed essential oil produced insecticidal activity against A. fabae (LC50 = 41.679, LC90 = 75.212 µl/mL), O. hyalinipennis (LC50 = 37.629, LC90 = 118.485 µl/mL), T. molitor (LC50 = 56.796, LC90 = 201.912 µl/mL), and S. litura (LC50 = 62.215, LC90 = 241.183 µl/mL). Essential oils do not cause a remarkable effect on E. eugeniae and A. salina cytotoxicity. The essential oils produced a lower effect on Artemia salina (LC50 = 384.382, LC90 = 1341.397 µl/mL) and no lethal effects were observed on E. eugeniae. The histopathological evaluation showed no sub-lethal effects of essential oils on earthworm gut tissues. GC-MS analysis results revealed that the major chemical constituent was hexadecane (19.560%) and heptacosane (17.214%) and FT-IR analysis revealed the presence of alkanes and alkyles, aromatics, and amides functional groups that may be involved in insecticidal activity. Overall, the results showed that the seed derived essential oil has excellent insecticidal action against major agricultural insect pests and may therefore offer an environmentally benign alternative to conventional insecticide.

5.
Front Microbiol ; 14: 1104079, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937255

RESUMEN

Entomopathogenic fungi from microbial sources are a powerful tool for combating insecticide resistance in insect pests. The purpose of the current study was to isolate, identify, and evaluate bag-formulated entomopathogenic fungal conidial virulence against insect pests. We further investigated the enzymatic responses induced by the entomopathogenic fungi as well as the effect on a non-target species. Entomopathogenic fungi were isolated from the Palamalai Hills, India, using the insect bait method, and the Metarhizium majus (MK418990.1) entomopathogen was identified using biotechnological techniques (genomic DNA isolation and 18S rDNA amplification). Bag-formulated fungal conidial efficacy (2.5 × 103, 2.5 × 104, 2.5 × 105, 2.5 × 106, and 2.5 × 107 conidia/ml) was evaluated against third instar larvae of Spodoptera frugiperda at 3, 6, 9, and 12 days of treatment, and acid and alkaline phosphatases, catalase, and superoxide dismutase enzymatic responses were evaluated at 3 days post-treatment. After 12 days of treatment, non-target assays on the earthworm Eudrilus eugeniae were performed using an artificial soil assay. Results of the bag formulated fungal conidial treatment showed that S. frugiperda had high susceptibility rates at higher concentrations (2.5 × 107 conidia/ml) of M. majus. Lower concentration of 2.5 × 103 conidia/ml caused 68.6% mortality, while 2.5 × 107 conidia/ml caused 100% mortality at 9 days post treatment. Investigation into enzymatic responses revealed that at 3 days post M. majus conidia exposure (2.5 × 103 conidia/ml), insect enzyme levels had significantly changed, with acid and alkaline phosphatases, and catalase enzymes significantly reduced and superoxide dismutase enzymes significantly raised relative to the control. After 12 days of treatment, no sublethal effects of M. majus conidia were observed on E. eugeniae, with no observed damage to gut tissues including lumen and epithelial cells, the nucleus, setae, coelom, mitochondria, and muscles. This study offers support for the use of fungal conidia in the target-specific control of insect pests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...