Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(22): 19917-19925, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305284

RESUMEN

The analysis of a chemical reaction along the ground-state potential energy surface in conjunction with an unknown spin state is challenging because electronic states must be separately computed several times using different spin multiplicities to find the lowest energy state. However, in principle, the ground state could be obtained with just a single calculation using a quantum computer without specifying the spin multiplicity in advance. In the present work, ground-state potential energy curves for PtCO were calculated as a proof-of-concept using a variational quantum eigensolver (VQE) algorithm. This system exhibits a singlet-triplet crossover as a consequence of the interaction between Pt and CO. VQE calculations using a statevector simulator were found to converge to a singlet state in the bonding region, while a triplet state was obtained at the dissociation limit. Calculations performed using an actual quantum device provided potential energies within ±2 kcal/mol of the simulated energies after error mitigation techniques were adopted. The spin multiplicities in the bonding and dissociation regions could be clearly distinguished even in the case of a small number of shots. The results of this study suggest that quantum computing can be a powerful tool for the analysis of the chemical reactions of systems for which the spin multiplicity of the ground state and variations in this parameter are not known in advance.

2.
ACS Omega ; 7(23): 19784-19793, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35722014

RESUMEN

A new concept of the molecular structure optimization method based on quantum dynamics computations is presented. Nuclei are treated as quantum mechanical particles, as are electrons, and the many-body wave function of the system is optimized by the imaginary time evolution method. The numerical demonstrations with a two-dimensional H2 + system and a H-C-N system exemplify two possible advantages of our proposed method: (1) the optimized nuclear positions can be specified with a small number of observations (quantum measurements) and (2) the global minimum structure of nuclei can be obtained without starting from any sophisticated initial structure and getting stuck in the local minima. This method is considered to be suitable for quantum computers, the development of which will realize its application as a powerful method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA