Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
5.
Nutrients ; 16(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38999808

RESUMEN

Bromelain is a mixture of proteolytic enzymes primarily extracted from the fruit and stem of the pineapple plant (Ananas comosus). It has a long history of traditional medicinal use in various cultures, particularly in Central and South America, where pineapple is native. This systematic review will delve into the history, structure, chemical properties, and medical indications of bromelain. Bromelain was first isolated and described in the late 19th century by researchers in Europe, who identified its proteolytic properties. Since then, bromelain has gained recognition in both traditional and modern medicine for its potential therapeutic effects.


Asunto(s)
Ananas , Bromelaínas , Bromelaínas/uso terapéutico , Bromelaínas/farmacología , Humanos , Ananas/química , Animales , Frutas/química
6.
Cardiovasc Diabetol ; 23(1): 268, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039512

RESUMEN

Ischemia with non-obstructive coronary artery (INOCA) is a common cause of hospital admissions, leading to negative outcomes and reduced quality of life. Central to its pathophysiology is endothelial dysfunction, which contributes to myocardial ischemia despite the absence of significant coronary artery blockage. Addressing endothelial dysfunction is essential in managing INOCA to alleviate symptoms and prevent cardiovascular events. Recent studies have identified diabetes mellitus (DM) as a significant factor exacerbating INOCA complications by promoting endothelial impairment and coronary microvascular dysfunction. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets in various biological processes, including endothelial dysfunction and cardiovascular diseases. However, research on miRNA biomarkers in INOCA patients is sparse. In this study, we examined a panel of circulating miRNAs involved in the regulation of endothelial function in INOCA patients with and without DM. We analyzed miRNA expression using RT-qPCR in a cohort of consecutive INOCA patients undergoing percutaneous coronary intervention. We detected a significant dysregulation of miR-363-5p and miR-92a-3p in INOCA patients with DM compared to those without DM, indicating their role as biomarkers for predicting and monitoring endothelial dysfunction in INOCA patients with DM.


Asunto(s)
MicroARN Circulante , Enfermedad de la Arteria Coronaria , MicroARNs , Humanos , Masculino , MicroARNs/genética , MicroARNs/sangre , MicroARNs/metabolismo , Femenino , Persona de Mediana Edad , Anciano , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/sangre , MicroARN Circulante/sangre , MicroARN Circulante/genética , Diabetes Mellitus/genética , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/sangre , Intervención Coronaria Percutánea/efectos adversos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Marcadores Genéticos , Células Endoteliales/metabolismo , Estudios de Casos y Controles
8.
J Biol Chem ; 300(8): 107567, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002685

RESUMEN

The Golgi compartment performs a number of crucial roles in the cell. However, the exact molecular mechanisms underlying these actions are not fully defined. Pathogenic mutations in genes encoding Golgi proteins may serve as an important source for expanding our knowledge. For instance, mutations in the gene encoding Transmembrane protein 165 (TMEM165) were discovered as a cause of a new type of congenital disorder of glycosylation (CDG). Comprehensive studies of TMEM165 in different model systems, including mammals, yeast, and fish uncovered the new realm of Mn2+ homeostasis regulation. TMEM165 was shown to act as a Ca2+/Mn2+:H+ antiporter in the medial- and trans-Golgi network, pumping the metal ions into the Golgi lumen and protons outside. Disruption of TMEM165 antiporter activity results in defects in N- and O-glycosylation of proteins and glycosylation of lipids. Impaired glycosylation of TMEM165-CDG arises from a lack of Mn2+ within the Golgi. Nevertheless, Mn2+ insufficiency in the Golgi is compensated by the activity of the ATPase SERCA2. TMEM165 turnover has also been found to be regulated by Mn2+ cytosolic concentration. Besides causing CDG, recent investigations have demonstrated the functional involvement of TMEM165 in several other pathologies including cancer and mental health disorders. This systematic review summarizes the available information on TMEM165 molecular structure, cellular function, and its roles in health and disease.

9.
Hypertension ; 81(7): 1637-1643, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38752357

RESUMEN

BACKGROUND: Prediabetes has garnered increasing attention due to its association with cardiovascular conditions, especially hypertension, which heightens the risk of prefrailty and frailty among older individuals. METHODS: We screened elders with prefrail hypertension from March 2021 to January 2023. We assessed the correlation linking cognitive dysfunction (Montreal Cognitive Assessment score), insulin resistance (triglyceride-to-glucose index), and physical impairment (5-meter gait speed). Then, we measured the risk of developing frailty after a 1-year follow-up period, adjusting the outcome using multivariable Cox regression analysis. We also investigated the impact of administering 500 mg of metformin once daily to a subset of frail subjects for an additional 6 months. RESULTS: We assessed the relationship between the triglyceride-to-glucose index and the Montreal Cognitive Assessment score, observing a significant correlation (r, 0.880; P<0.0001). Similarly, we analyzed the association between the triglyceride-to-glucose index and 5-meter gait speed, uncovering a significant link between insulin resistance and physical impairment (r, 0.809; P<0.0001). Prediabetes was found to significantly (P<0.0001) elevate the risk of frailty development compared with individuals without prediabetes by the end of the 1-year follow-up, a finding confirmed via multivariable analysis with Cox regression. Furthermore, among the subgroup of subjects who developed frailty, those who received metformin exhibited a significant decrease in frailty levels (P<0.0001). CONCLUSIONS: Insulin resistance and prediabetes play substantial roles in the development of cognitive and physical impairments, highlighting their importance in managing hypertension, even before the onset of frank diabetes. Metformin, a well-established drug for the treatment of diabetes, has shown favorable effects in mitigating frailty.


Asunto(s)
Fragilidad , Hipertensión , Hipoglucemiantes , Metformina , Estado Prediabético , Humanos , Metformina/uso terapéutico , Masculino , Estado Prediabético/tratamiento farmacológico , Anciano , Femenino , Fragilidad/epidemiología , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Anciano Frágil , Anciano de 80 o más Años , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/prevención & control , Disfunción Cognitiva/etiología , Glucemia/efectos de los fármacos , Glucemia/metabolismo
10.
J Pharmacol Exp Ther ; 389(1): 34-39, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336381

RESUMEN

Emerging evidence indicates that the relationship between coronavirus disease 2019 (COVID-19) and diabetes is 2-fold: 1) it is known that the presence of diabetes and other metabolic alterations poses a considerably high risk to develop a severe COVID-19; 2) patients who survived a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have an increased risk of developing new-onset diabetes. However, the mechanisms underlying this association are mostly unknown, and there are no reliable biomarkers to predict the development of new-onset diabetes. In the present study, we demonstrate that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells reliably predicts the risk of developing new-onset diabetes in COVID-19. This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. SIGNIFICANCE STATEMENT: We demonstrate for the first time that a specific microRNA (miR-34a) contained in circulating extracellular vesicles released by endothelial cells is able to reliably predict the risk of developing diabetes after having contracted coronavirus disease 2019 (COVID-19). This association was independent of age, sex, body mass index (BMI), hypertension, dyslipidemia, smoking status, and D-dimer. Our findings are also relevant when considering the emerging importance of post-acute sequelae of COVID-19, with systemic manifestations observed even months after viral negativization (long COVID).


Asunto(s)
COVID-19 , Diabetes Mellitus , Dislipidemias , Hipertensión , MicroARNs , Humanos , COVID-19/complicaciones , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Células Endoteliales , Progresión de la Enfermedad
12.
J Alzheimers Dis ; 97(4): 1685-1687, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38306052

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder marked by amyloid-ß accumulation, tau dysfunction, and neuroinflammation, involving endothelial cells and leukocytes. The breakdown of the blood-brain barrier allows immune cell infiltration, intensifying inflammation. A decreased ratio of Connexin-37 (Cx37, also known as GJA4: Gap Junction Protein Alpha 4) and Prolyl Hydroxylase Domain-Containing Protein 3 (PHD3, also known as EGLN3: Egl-9 Family Hypoxia Inducible Factor 3), Cx37/PHD3, consistently observed in different AD-related models, may represent a novel potential biomarker of AD, albeit the exact mechanisms underlying this phenomenon, most likely based on gap junction-mediated cellular interaction that modulate the cellular metabolite status, remain to be fully elucidated.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Células Endoteliales/metabolismo , Péptidos beta-Amiloides/metabolismo , Leucocitos/metabolismo , Biomarcadores
14.
JACC Basic Transl Sci ; 8(9): 1123-1137, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791311

RESUMEN

Ischemic cardiac disease is a major cause of mortality worldwide. However, the exact molecular processes underlying this disorder are not fully known. This study includes a comprehensive and coordinated set of in vivo and in vitro experiments using human cardiac specimens from patients with postischemic heart failure (HF) and healthy control subjects, a murine model of HF, and cellular systems. These approaches identified for the first time a specific pattern of maladaptive chromatin remodeling, namely a double methylation of histone 3 at lysine 27 and a single methylation at lysine 36 (H3_K27me2K36me1) consistently induced by ischemic injury in all these settings: human HF; murine HF; and in vitro models. Mechanistically, this work demonstrates that this histone modification mediates the ischemia-induced transcriptional repression of PPARG coactivator 1α (PGC1α), master regulator of mitochondrial function and biogenesis. Intriguingly, both the augmented H3_K27me2K36me1 and the mitochondrial dysfunction ensued by PGC1α down-regulation were significantly attenuated by the treatment with ß-hydroxybutyrate, the most abundant ketone body in humans, revealing a novel pathway coupling metabolism to gene expression. Taken together, these findings establish maladaptive chromatin remodeling as a key mechanism in postischemic heart injury, functionally modulated by ketone bodies.

15.
Nutrients ; 15(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37836520

RESUMEN

Taurine, a naturally occurring sulfur-containing amino acid, has attracted significant attention in recent years due to its potential health benefits. Found in various foods and often used in energy drinks and supplements, taurine has been studied extensively to understand its impact on human physiology. Determining its exact functional roles represents a complex and multifaceted topic. We provide an overview of the scientific literature and present an analysis of the effects of taurine on various aspects of human health, focusing on aging and cardiovascular pathophysiology, but also including athletic performance, metabolic regulation, and neurological function. Additionally, our report summarizes the current recommendations for taurine intake and addresses potential safety concerns. Evidence from both human and animal studies indicates that taurine may have beneficial cardiovascular effects, including blood pressure regulation, improved cardiac fitness, and enhanced vascular health. Its mechanisms of action and antioxidant properties make it also an intriguing candidate for potential anti-aging strategies.


Asunto(s)
Corazón , Taurina , Animales , Humanos , Taurina/farmacología , Taurina/metabolismo , Antioxidantes/farmacología , Suplementos Dietéticos , Envejecimiento
16.
Expert Opin Investig Drugs ; 32(9): 839-847, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37740906

RESUMEN

INTRODUCTION: Sodium Glucose co-Transporter 2 (SGLT2) inhibitors (also known as 'gliflozins') represent a cornerstone to treat diabetes mellitus. Moreover, recent randomized clinical trials have demonstrated important cardioprotective effects of gliflozins, independent of the presence of diabetes. Herein, we summarize the recent therapeutic progress in the cardiovascular field obtained with SGLT2 inhibitors. AREA COVERED: We critically examine the rationale and results of recent clinical studies examining the effects of SGLT2 inhibitors on cardiovascular outcomes, along with a brief overview of the main ongoing trials that have been designed in order to answer the many pending questions in the field of gliflozins and cardiovascular disease. EXPERT OPINION: The favorable results of several clinical trials have broadened the therapeutic scenario for SGLT2 inhibitors, opening, at the same time, new challenges. Additionally, recent preclinical findings have evidenced off-target effects of SGLT2 inhibitors.

17.
Hypertension ; 80(9): 1800-1809, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37403685

RESUMEN

SGLT2 (sodium-glucose cotransporter 2) enables glucose and sodium reabsorption in the kidney. SGLT2-inhibitors (also known as gliflozins, which include canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin) act by increasing glycosuria, thereby reducing glycemia. These drugs are critical to reach and keep glycemic control, a crucial feature, especially in patients with comorbidities, like frail individuals. Several studies evaluated the effects of SGLT2-inhibitors in different settings beyond diabetes, revealing that they are actually pleiotropic drugs. We recently evidenced the favorable effects of SGLT2-inhibition on physical and cognitive impairment in frail older adults with diabetes and hypertension. In the present overview, we summarize the latest clinical and preclinical studies exploring the main effects of SGLT2-inhibitors on kidney and heart, emphasizing their potential beneficial actions in frailty.


Asunto(s)
Diabetes Mellitus Tipo 2 , Fragilidad , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Anciano , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Hipoglucemiantes/farmacología , Transportador 2 de Sodio-Glucosa/farmacología , Relevancia Clínica , Riñón , Glucosa , Compuestos de Bencidrilo/farmacología , Compuestos de Bencidrilo/uso terapéutico , Sodio
19.
Int J Mol Sci ; 24(9)2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37176093

RESUMEN

Embryonic stem cells (ESCs) are derived from the inner cell mass (ICM) of the blastocyst. ESCs have two distinctive properties: ability to proliferate indefinitely, a feature referred as "self-renewal", and to differentiate into different cell types, a peculiar characteristic known as "pluripotency". Self-renewal and pluripotency of ESCs are finely orchestrated by precise external and internal networks including epigenetic modifications, transcription factors, signaling pathways, and histone modifications. In this systematic review, we examine the main molecular mechanisms that sustain self-renewal and pluripotency in both murine and human ESCs. Moreover, we discuss the latest literature on human naïve pluripotency.


Asunto(s)
Células Madre Embrionarias , Células Madre Embrionarias Humanas , Humanos , Animales , Ratones , Células Madre Embrionarias Humanas/metabolismo , Blastocisto , Transducción de Señal , Factores de Transcripción/metabolismo , Diferenciación Celular
20.
Cardiovasc Diabetol ; 22(1): 89, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37072850

RESUMEN

L-Arginine (L-Arg), is a semi-essential amino acid involved in the formation of nitric oxide. The functional relevance of L-Arg in diabetes mellitus has been evaluated both in animal models and in human subjects. In the literature there are several lines of evidence indicating that L-Arg has beneficial effects in diabetes and numerous studies advocate its administration to attenuate glucose intolerance in diabetic patients. Here we present a comprehensive overview of the main studies exploring the effects of L-Arg in diabetes, including preclinical and clinical reports on this topic.


Asunto(s)
Diabetes Mellitus , Intolerancia a la Glucosa , Animales , Humanos , Arginina/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/tratamiento farmacológico , Óxido Nítrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA