Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Clin Microbiol Antimicrob ; 23(1): 44, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755634

RESUMEN

BACKGROUND: Due to their resistance and difficulty in treatment, biofilm-associated infections are problematic among hospitalized patients globally and account for 60% of all bacterial infections in humans. Antibiofilm peptides have recently emerged as an alternative treatment since they can be effectively designed and exert a different mode of biofilm inhibition and eradication. METHODS: A novel antibiofilm peptide, BiF, was designed from the conserved sequence of 18 α-helical antibiofilm peptides by template-assisted technique and its activity was improved by hybridization with a lipid binding motif (KILRR). Novel antibiofilm peptide derivatives were modified by substituting hydrophobic amino acids at positions 5 or 7, and both, with positively charged lysines (L5K, L7K). These peptide derivatives were tested for antibiofilm and antimicrobial activities against biofilm-forming Staphylococcus epidermidis and multiple other microbes using crystal violet and broth microdilution assays, respectively. To assess their impact on mammalian cells, the toxicity of peptides was determined through hemolysis and cytotoxicity assays. The stability of candidate peptide, BiF2_5K7K, was assessed in human serum and its secondary structure in bacterial membrane-like environments was analyzed using circular dichroism. The action of BiF2_5K7K on planktonic S. epidermidis and its effect on biofilm cell viability were assessed via viable counting assays. Its biofilm inhibition mechanism was investigated through confocal laser scanning microscopy and transcription analysis. Additionally, its ability to eradicate mature biofilms was examined using colony counting. Finally, a preliminary evaluation involved coating a catheter with BiF2_5K7K to assess its preventive efficacy against S. epidermidis biofilm formation on the catheter and its surrounding area. RESULTS: BiF2_5K7K, the modified antibiofilm peptide, exhibited dose-dependent antibiofilm activity against S. epidermidis. It inhibited biofilm formation at subinhibitory concentrations by altering S. epidermidis extracellular polysaccharide production and quorum-sensing gene expression. Additionally, it exhibited broad-spectrum antimicrobial activity and no significant hemolysis or toxicity against mammalian cell lines was observed. Its activity is retained when exposed to human serum. In bacterial membrane-like environments, this peptide formed an α-helix amphipathic structure. Within 4 h, a reduction in the number of S. epidermidis colonies was observed, demonstrating the fast action of this peptide. As a preliminary test, a BiF2_5K7K-coated catheter was able to prevent the development of S. epidermidis biofilm both on the catheter surface and in its surrounding area. CONCLUSIONS: Due to the safety and effectiveness of BiF2_5K7K, we suggest that this peptide be further developed to combat biofilm infections, particularly those of biofilm-forming S. epidermidis.


Asunto(s)
Antibacterianos , Biopelículas , Pruebas de Sensibilidad Microbiana , Staphylococcus epidermidis , Biopelículas/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Staphylococcus epidermidis/fisiología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Hemólisis/efectos de los fármacos , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología
2.
Biofouling ; 40(1): 26-39, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38286789

RESUMEN

Chronic rhinosinusitis (CRS) is long-term inflammation of the sinuses that can be caused by infection due to antibiotic-resistant bacteria. Biofilm developed by microbes is postulated to cause antibiotic treatment failure. Thus, the anti-biofilm activities of seven Thai herbal essential oils (EOs) against antibiotic-resistant bacteria isolated from CRS patients was investigated. Lemongrass (Cymbopogon citratus L.) EO showed the most effective antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa and Staphylococcus epidermidis grown as biofilm. GC-MS analysis found that myrcene was the major bioactive compound. Pretreatment with lemongrass EO significantly inhibited biofilm formation of all bacterial strains in more than 50% of cases. Furthermore, confocal microscopy analysis revealed the biofilm-disrupting activity of lemongrass EO against the biofilm matrix of all these bacterial species and also increased P. aeruginosa swarming motility with no toxicity to human cells. These results suggest that lemongrass EO has promising clinical applications as an anti-biofilm agent for CRS patients.


Asunto(s)
Cymbopogon , Aceites Volátiles , Rinosinusitis , Humanos , Antibacterianos/farmacología , Aceites Volátiles/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana , Bacterias
3.
Sci Rep ; 13(1): 18762, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907584

RESUMEN

Several vaccine programs were introduced during the COVID-19 pandemic, which included inactivated virus, DNA viral vectors and mRNA vaccines. Booster programs are recommended, especially for those in high-risk groups. However, many of these booster programs involve heterologous vaccines. This study enrolled volunteers who first received two full-dose CoronaVac vaccinations before receiving heterologous boosters with DNA- and/or mRNA-vaccines for an additional 2 doses (n = 40) or an additional 3 doses (n = 16). Our results showed no difference in side effects, neutralizing antibodies, or T-cell responses for any of the heterologous vaccination programs. However, the neutralizing capacity and IFN-γ responses against the Omicron variant in volunteers who received 4 or 5 doses were improved. Polarization of peripheral memory T cells after stimulation in all booster groups with Omicron peptide showed an increased trend of naïve and central memory phenotypes of both CD4+ and CD8+ T cells, suggesting that exposure to Omicron antigens will drive T cells into a lymphoid resident T cell phenotype. Our data support a continuous vaccination program to maximize the effectiveness of immunity, especially in people at high risk. Furthermore, the number of boosting doses is important for maintaining immunity.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , COVID-19/prevención & control , Pandemias , SARS-CoV-2 , Anticuerpos Neutralizantes , Inmunidad , Anticuerpos Antivirales , Vacunas de Productos Inactivados
4.
PLoS One ; 18(2): e0280944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36758060

RESUMEN

Melioidosis is an infectious disease with high mortality rates in human, caused by the bacterium Burkholderia pseudomallei. As an intracellular pathogen, B. pseudomallei can escape from the phagosome and induce multinucleated giant cells (MNGCs) formation resulting in antibiotic resistance and immune evasion. A novel strategy to modulate host response against B. pseudomallei pathogenesis is required. In this study, an active metabolite of vitamin D3 (1α,25-dihydroxyvitamin D3 or 1α,25(OH)2D3) was selected to interrupt pathogenesis of B. pseudomallei in a human lung epithelium cell line, A549. The results demonstrated that pretreatment with 10-6 M 1α,25(OH)2D3 could reduce B. pseudomallei internalization to A549 cells at 4 h post infection (P < 0.05). Interestingly, the presence of 1α,25(OH)2D3 gradually reduced MNGC formation at 8, 10 and 12 h compared to that of the untreated cells (P < 0.05). Furthermore, pretreatment with 10-6 M 1α,25(OH)2D3 considerably increased hCAP-18/LL-37 mRNA expression (P < 0.001). Additionally, pro-inflammatory cytokines, including MIF, PAI-1, IL-18, CXCL1, CXCL12 and IL-8, were statistically decreased (P < 0.05) in 10-6 M 1α,25(OH)2D3-pretreated A549 cells by 12 h post-infection. Taken together, this study indicates that pretreatment with 10-6 M 1α,25(OH)2D3 has the potential to reduce the internalization of B. pseudomallei into host cells, decrease MNGC formation and modulate host response during B. pseudomallei infection by minimizing the excessive inflammatory response. Therefore, 1α,25(OH)2D3 supplement may provide an effective supportive treatment for melioidosis patients to combat B. pseudomallei infection and reduce inflammation in these patients.


Asunto(s)
Melioidosis , Humanos , Melioidosis/tratamiento farmacológico , Vitamina D , Vitaminas , Células Epiteliales/metabolismo , Pulmón/metabolismo , Células Gigantes/metabolismo , Suplementos Dietéticos
5.
Molecules ; 27(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36364267

RESUMEN

Skin hyperpigmentation is an aesthetic problem that leads to psychosocial issues. Thus, skin whitening agents from agro- and poultry-industrial co-products are considered high economic value ingredients of interest for sustainable application. Therefore, this study aimed to determine the cosmeceutical potential of anserine/carnosine-rich chicken extract (ACCE) from the Thai native chicken Pradu Hang Dam Mor Kor 55 (PD) meat. The chemical composition was identified and quantified using the HPLC-UV method. Then, the antioxidation potential of the extract was compared to that of L-anserine and L-carnosine, using 1,1-diphenyl-2-picrylhydrazyl assay and shikonin-induced production of reactive oxygen species in CCD-986Sk cell models, and the anti-melanogenesis effect in the MNT-1 melanoma cell line model was investigated. Furthermore, related mechanisms were identified using colorimetric tyrosinase assay and the Western blot technique. The ACCE was composed of L-anserine and L-carnosine as two major constituents. In a dose-dependent manner, ACCE, L-anserine, and L-carnosine manifested significant antioxidation potential and significant reduction of melanin production. Activation of the extracellular signal-regulated kinase (ERK) signaling pathway and inhibition of tyrosinase activity of ACCE were demonstrated as the mechanisms of the anti-melanogenesis effect. In conclusion, ACCE has been revealed as a potential cosmeceutical agent due to its antioxidation and anti-melanogenic activity in association with L-anserine and L-carnosine composition and biomolecular regulating ability. Therefore, further studies and development should be considered to support the utilization of anserine/carnosine-rich chicken extract in the cosmetic industry for economic value creation and sustainability.


Asunto(s)
Carnosina , Cosmecéuticos , Animales , Anserina/química , Carnosina/química , Pollos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Monofenol Monooxigenasa/metabolismo , Tailandia , Antioxidantes/farmacología , Antioxidantes/metabolismo , Transducción de Señal
6.
Vaccine ; 40(48): 6963-6970, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36283898

RESUMEN

BACKGROUND: The pandemic coronavirus disease 2019 (COVID-19) is a major global public health concern and several protective vaccines, or preventive/therapeutic approaches have been developed. Sinovac-CoronaVac, an inactivated whole virus vaccine, can protect against severe COVID-19 disease and hospitalization, but less is known whether it elicits long-term T cell responses and provides prolonged protection. METHODS: This is a longitudinal surveillance study of SARS-CoV-2 receptor binding domain (RBD)-specific IgG levels, neutralizing antibody levels (NAb), T cell subsets and activation, and memory B cells of 335 participants who received two doses of CoronaVac. SARS-CoV-2 RBD-specific IgG levels were measured by enzyme-linked immunosorbent assay (ELISA), while NAb were measured against two strains of SARS-CoV-2, the Wuhan and Delta variants. Activated T cells and subsets were identified by flow cytometry. Memory B and T cells were evaluated by enzyme-linked immune absorbent spot (ELISpot). FINDINGS: Two doses of CoronaVac elicited serum anti-RBD antibody response, elevated B cells with NAb capacity and CD4+ T cell-, but not CD8+ T cell-responses. Among the CD4+ T cells, CoronaVac activated mainly Th2 (CD4+ T) cells. Serum antibody levels significantly declined three months after the second dose. INTERPRETATION: CoronaVac mainly activated B cells but T cells, especially Th1 cells, were poorly activated. Activated T cells were mainly Th2 biased, demonstrating development of effector B cells but not long-lasting memory plasma cells. Taken together, these results suggest that protection with CoronaVac is short-lived and that a third booster dose of vaccine may improve protection.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19 , Anticuerpos Antivirales , Vacunación , Anticuerpos Neutralizantes , Inmunoglobulina G/análisis , Células TH1 , Vacunas de Productos Inactivados
7.
ACS Omega ; 7(36): 32653-32664, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36120041

RESUMEN

Staphylococcus aureus is deemed to be one of the major causes of hospital and community-acquired infections, especially in methicillin-resistant S. aureus (MRSA) strains. Because antimicrobial peptides have captured attention as novel drug candidates due to their rapid and broad-spectrum antimicrobial activity, anti-MRSA peptides have emerged as potential therapeutics for the treatment of bacterial infections. Although experimental approaches can precisely identify anti-MRSA peptides, they are usually cost-ineffective and labor-intensive. Therefore, computational approaches that are able to identify and characterize anti-MRSA peptides by using sequence information are highly desirable. In this study, we present the first computational approach (termed SCMRSA) for identifying and characterizing anti-MRSA peptides by using sequence information without the use of 3D structural information. In SCMRSA, we employed an interpretable scoring card method (SCM) coupled with the estimated propensity scores of 400 dipeptides. Comparative experiments indicated that SCMRSA was more effective and could outperform several machine learning-based classifiers with an accuracy of 0.960 and Matthews correlation coefficient of 0.848 on the independent test data set. In addition, we employed the SCMRSA-derived propensity scores to provide a more in-depth explanation regarding the functional mechanisms of anti-MRSA peptides. Finally, in order to serve community-wide use of the proposed SCMRSA, we established a user-friendly webserver which can be accessed online at http://pmlabstack.pythonanywhere.com/SCMRSA. SCMRSA is anticipated to be an open-source and useful tool for screening and identifying novel anti-MRSA peptides for follow-up experimental studies.

8.
EXCLI J ; 21: 11-29, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145365

RESUMEN

Phage virion proteins (PVPs) are effective at recognizing and binding to host cell receptors while having no deleterious effects on human or animal cells. Understanding their functional mechanisms is regarded as a critical goal that will aid in rational antibacterial drug discovery and development. Although high-throughput experimental methods for identifying PVPs are considered the gold standard for exploring crucial PVP features, these procedures are frequently time-consuming and labor-intensive. Thusfar, more than ten sequence-based predictors have been established for the in silico identification of PVPs in conjunction with traditional experimental approaches. As a result, a revised and more thorough assessment is extremely desirable. With this purpose in mind, we first conduct a thorough survey and evaluation of a vast array of 13 state-of-the-art PVP predictors. Among these PVP predictors, they can be classified into three groups according to the types of machine learning (ML) algorithms employed (i.e. traditional ML-based methods, ensemble-based methods and deep learning-based methods). Subsequently, we explored which factors are important for building more accurate and stable predictors and this included training/independent datasets, feature encoding algorithms, feature selection methods, core algorithms, performance evaluation metrics/strategies and web servers. Finally, we provide insights and future perspectives for the design and development of new and more effective computational approaches for the detection and characterization of PVPs.

9.
PLoS One ; 16(11): e0260003, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34780520

RESUMEN

Mycobacterium abscessus (Mab) is one of the most drug resistant bacteria with a high treatment failure rate. Antimicrobial peptides (AMPs) are alternative therapeutic agents against this infection. This study was aimed to assess the in vitro activities of thirteen AMPs (S5, S52, S6, S61, S62, S63, KLK, KLK1, KLK2, Pug-1, Pug-2, Pug-3 and Pug-4) that have never been investigated against drug resistant Mab isolates. Only four novel modified AMPs (S61, S62, S63 and KLK1) provided the lowest minimum inhibitory concentration (MIC) values ranging from 200-400 µg/ml against the Mab ATCC19977 strain. These four potential AMPs were further tested with 16 clinical isolates of clarithromycin resistant Mab. The majority of the tested strains (10/16 isolates, 62.5%) showed ~99% kill by all four AMPs within 24 hours with an MIC <50 µg/ml. Only two isolates (12.5%) with acquired clarithromycin resistance, however, exhibited values <50 µg/ml of four potential AMPs, S61, S62, S63 and KLK1 after 3-days-incubation. At the MICs level, S63 showed the lowest toxicity with 1.50% hemolysis and 100% PBMC viability whereas KLK1 showed the highest hemolysis (10.21%) and lowest PBMC viability (93.52%). S61, S62 and S63 were further tested with clarithromycin-AMP interaction assays and found that 5/10 (50%) of selected isolates exhibited a synergistic interaction with 0.02-0.41 FICI values. This present study demonstrated the potential application of novel AMPs as an adjunctive treatment with clarithromycin against drug resistant Mab infection.


Asunto(s)
Péptidos Antimicrobianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium abscessus/crecimiento & desarrollo , Claritromicina/farmacología , Eritrocitos/efectos de los fármacos , Genoma Bacteriano , Hemólisis , Humanos , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana , Mycobacterium abscessus/efectos de los fármacos , Mycobacterium abscessus/genética , Mycobacterium abscessus/aislamiento & purificación , Secuenciación Completa del Genoma
10.
Korean J Parasitol ; 59(4): 363-368, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34470087

RESUMEN

Despite the synergistic effect of Opisthorchis viverrini and Helicobacter pylori co-infection on pathogenesis of severe hepatobiliary abnormalities (HBA) including advanced periductal fibrosis and replace with cholangiocarcinoma (CCA) have been established, the immune response to H. pylori in O. viverrini infected population has never been explored. Hence, this study aimed to investigate the antibody responses to 2 immunogenic H. pylori proteins in O. viverrini-infected patients with HBA and CCA. The risk analysis by multinomial logistic regression revealed that GroEL seropositivity was associated with higher risks of hepatobiliary abnormalities and CCA with adjusted odds ratios (95% confidence intervals) of 2.11 (95% CI=1.20-3.71, P=0.008) and 2.13 (95% CI=1.21-3.75, P=0.009), respectively. These findings indicate that GroEL seropositivity might be a biomarker for early detection of O. viverrini associated HBA and CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Helicobacter pylori , Opistorquiasis , Opisthorchis , Animales , Conductos Biliares Intrahepáticos , Humanos , Opistorquiasis/complicaciones
11.
Antimicrob Agents Chemother ; 65(9): e0067521, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34181474

RESUMEN

A large-scale surveillance is an important measure to monitor the regional spread of antimicrobial resistance. We prospectively studied the prevalence and molecular characteristics of clinically important Gram-negative bacilli, including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii complex (ABC), and Pseudomonas aeruginosa, from blood, respiratory tract, urine, and sterile sites at 47 hospitals across Thailand. Among 187,619 isolates, 93,810 isolates (50.0%) were critically drug resistant, of which 12,915 isolates (13.8%) were randomly selected for molecular characterization. E. coli was most commonly isolated from all specimens, except the respiratory tract, in which ABC was predominant. Prevalence of extended-spectrum cephalosporin resistance (ESCR) was higher in E. coli (42.5%) than K. pneumoniae (32.0%), but carbapenem-resistant (CR)-K. pneumoniae (17.2%) was 4.5-fold higher than CR-E. coli (3.8%). The majority of ESCR/CR-E. coli and K. pneumoniae isolates carried blaCTX-M (64.6% to 82.1%). blaNDM and blaOXA-48-like were the most prevalent carbapenemase genes in CR-E. coli/CR-K. pneumoniae (74.9%/52.9% and 22.4%/54.1%, respectively). In addition, 12.9%/23.0% of CR-E. coli/CR-K. pneumoniae cocarried blaNDM and blaOXA-48-like. Among ABC isolates, 41.9% were extensively drug resistant (XDR) and 35.7% were multidrug resistant (MDR), while P. aeruginosa showed XDR/MDR at 6.3%/16.5%. A. baumannii was the most common species among ABC isolates. The major carbapenemase gene in MDR-A. baumannii/XDR-A. baumannii was blaOXA-23-like (85.8%/93.0%), which had much higher rates than other ABC species. blaIMP, blaVIM, blaOXA-40-like, and blaOXA-58-like were also detected in ABC at lower rates. The most common carbapenemase gene in MDR/XDR-P. aeruginosa was blaIMP (29.0%/30.6%), followed by blaVIM (9.5%/25.3%). The findings reiterate an alarming situation of drug resistance that requires serious control measures.


Asunto(s)
Escherichia coli , Preparaciones Farmacéuticas , Antibacterianos/farmacología , Escherichia coli/genética , Bacterias Gramnegativas/genética , Humanos , Pruebas de Sensibilidad Microbiana , Tailandia , Universidades , beta-Lactamasas/genética
12.
Genomics ; 113(1 Pt 2): 689-698, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33017626

RESUMEN

Fast, accurate identification and characterization of amyloid proteins at a large-scale is essential for understating their role in therapeutic intervention strategies. As a matter of fact, there exist only one in silico model for amyloid protein identification using the random forest (RF) model in conjunction with various feature types namely the RFAmy. However, it suffers from low interpretability for biologists. Thus, it is highly desirable to develop a simple and easily interpretable prediction method with robust accuracy as compared to the existing complicated model. In this study, we propose iAMY-SCM, the first scoring card method-based predictor for predicting and analyzing amyloid proteins. Herein, the iAMY-SCM made use of a simple weighted-sum function in conjunction with the propensity scores of dipeptides for the amyloid protein identification. Cross-validation results indicated that iAMY-SCM provided an accuracy of 0.895 that corresponded to 10-22% higher performance than that of widely used machine learning models. Furthermore, iAMY-SCM achieving an accuracy of 0.827 as evaluated by an independent test, which was found to be comparable to that of RFAmy and was approximately 9-13% higher than widely used machine learning models. Furthermore, the analysis of estimated propensity scores of amino acids and dipeptides were performed to provide insights into the biophysical and biochemical properties of amyloid proteins. As such, this demonstrates that the proposed iAMY-SCM is efficient and reliable in terms of simplicity, interpretability and implementation. To facilitate ease of use of the proposed iAMY-SCM, a user-friendly and publicly accessible web server at http://camt.pythonanywhere.com/iAMY-SCM has been established. We anticipate that that iAMY-SCM will be an important tool for facilitating the large-scale prediction and characterization of amyloid protein.


Asunto(s)
Amiloide/química , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Amiloide/genética , Amiloide/metabolismo , Aprendizaje Automático , Puntaje de Propensión , Conformación Proteica , Multimerización de Proteína
13.
PLoS One ; 15(12): e0243315, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33326455

RESUMEN

Chronic rhinosinusitis (CRS) is a chronic disease that involves long-term inflammation of the nasal cavity and paranasal sinuses. Bacterial biofilms present on the sinus mucosa of certain patients reportedly exhibit resistance against traditional antibiotics, as evidenced by relapse, resulting in severe disease. The aim of this study was to determine the killing activity of human cathelicidin antimicrobial peptides (LL-37, LL-31) and their D-enantiomers (D-LL-37, D-LL-31), alone and in combination with conventional antibiotics (amoxicillin; AMX and tobramycin; TOB), against bacteria grown as biofilm, and to investigate the biological activities of the peptides on human lung epithelial cells. D-LL-31 was the most effective peptide against bacteria under biofilm-stimulating conditions based on IC50 values. The synergistic effect of D-LL-31 with AMX and TOB decreased the IC50 values of antibiotics by 16-fold and could eliminate the biofilm matrix in all tested bacterial strains. D-LL-31 did not cause cytotoxic effects in A549 cells at 25 µM after 24 h of incubation. Moreover, a cytokine array indicated that there was no significant induction of the cytokines involving in immunopathogenesis of CRS in the presence of D-LL-31. However, a tissue-remodeling-associated protein was observed that may prevent the progression of nasal polyposis in CRS patients. Therefore, a combination of D-LL-31 with AMX or TOB may improve the efficacy of currently used antibiotics to kill biofilm-embedded bacteria and eliminate the biofilm matrix. This combination might be clinically applicable for treatment of patients with biofilm-associated CRS.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Células Epiteliales/microbiología , Pulmón/microbiología , Rinitis , Sinusitis , Células A549 , Adolescente , Adulto , Anciano , Biopelículas/crecimiento & desarrollo , Enfermedad Crónica , Células Epiteliales/metabolismo , Femenino , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Persona de Mediana Edad , Rinitis/tratamiento farmacológico , Rinitis/microbiología , Rinitis/patología , Sinusitis/tratamiento farmacológico , Sinusitis/microbiología , Sinusitis/patología , Catelicidinas
14.
Biofouling ; 36(9): 1117-1128, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33297738

RESUMEN

Chronic rhinosinusitis (CRS) is a chronic infection of the nasal cavity and paranasal sinuses associated with the presence of a microbial biofilm. Extracellular DNA (eDNA) is an important component of the biofilm matrix. Antimicrobial peptides (AMPs) are natural peptides with the ability to kill microorganisms. D-LL-31 is a synthetic variant of the AMP cathelicidin with increased resistance to proteolytic breakdown. In this study it is shown for 3 clinical CRS isolates that treatment of 24 h biofilms with DNase I enhanced the antimicrobial activity of D-LL-31. Conversely, co-incubation of D-LL-31 at the IC50 value with exogenous DNA resulted in reduced antimicrobial activity. DNase I alone did not show antimicrobial activity against the isolates tested but caused dispersal of an established biofilm. Hence, the presence of eDNA in the biofilm matrix reduced AMP-mediated killing. These results suggest that combination therapy with proteolysis resistant AMP D-LL-31 and DNase could be considered for effective treatment of CRS.


Asunto(s)
Biopelículas , Antibacterianos , Bacterias/genética , Desoxirribonucleasa I , Desoxirribonucleasas
15.
J Proteome Res ; 19(10): 4125-4136, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32897718

RESUMEN

The inhibition of dipeptidyl peptidase IV (DPP-IV, E.C.3.4.14.5) is well recognized as a new avenue for the treatment of Type 2 diabetes (T2D). Until now, peptide-like DDP-IV inhibitors have been shown to normalize the blood glucose concentration in T2D subjects. To the best of our knowledge, there is yet no computational model for predicting and analyzing DPP-IV inhibitory peptides using sequence information. In this study, we present for the first time a simple and easily interpretable sequence-based predictor using the scoring card method (SCM) for modeling the bioactivity of DPP-IV inhibitory peptides (iDPPIV-SCM). Particularly, the iDPPIV-SCM was developed by employing the SCM method together with the propensity scores of amino acids. Rigorous independent test results demonstrated that the proposed iDPPIV-SCM was found to be superior to those of well-known machine learning (ML) classifiers (e.g., k-nearest neighbor, logistic regression, and decision tree) with demonstrated improvements of 2-11, 4-22, and 7-10% for accuracy, MCC, and AUC, respectively, while also achieving comparable results to that of the support vector machine. Furthermore, the analysis of estimated propensity scores of amino acids as derived from the iDPPIV-SCM was performed so as to provide a more in-depth understanding on the molecular basis for enhancing the DPP-IV inhibitory potency. Taken together, these results revealed that iDPPIV-SCM was superior to those of other well-known ML classifiers owing to its simplicity, interpretability, and validity. For the convenience of biologists, the predictive model is deployed as a publicly accessible web server at http://camt.pythonanywhere.com/iDPPIV-SCM. It is anticipated that iDPPIV-SCM can serve as an important tool for the rapid screening of promising DPP-IV inhibitory peptides prior to their synthesis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dipeptidil Peptidasa 4 , Aminoácidos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Péptidos , Máquina de Vectores de Soporte
16.
Cells ; 9(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32028709

RESUMEN

Although, existing methods have been successful in predicting phage (or bacteriophage) virion proteins (PVPs) using various types of protein features and complex classifiers, such as support vector machine and naïve Bayes, these two methods do not allow interpretability. However, the characterization and analysis of PVPs might be of great significance to understanding the molecular mechanisms of bacteriophage genetics and the development of antibacterial drugs. Hence, we herein proposed a novel method (PVPred-SCM) based on the scoring card method (SCM) in conjunction with dipeptide composition to identify and characterize PVPs. In PVPred-SCM, the propensity scores of 400 dipeptides were calculated using the statistical discrimination approach. Rigorous independent validation test showed that PVPred-SCM utilizing only dipeptide composition yielded an accuracy of 77.56%, indicating that PVPred-SCM performed well relative to the state-of-the-art method utilizing a number of protein features. Furthermore, the propensity scores of dipeptides were used to provide insights into the biochemical and biophysical properties of PVPs. Upon comparison, it was found that PVPred-SCM was superior to the existing methods considering its simplicity, interpretability, and implementation. Finally, in an effort to facilitate high-throughput prediction of PVPs, we provided a user-friendly web-server for identifying the likelihood of whether or not these sequences are PVPs. It is anticipated that PVPred-SCM will become a useful tool or at least a complementary existing method for predicting and analyzing PVPs.


Asunto(s)
Bacteriófagos/metabolismo , Biología Computacional/métodos , Proteínas Virales/química , Virión/metabolismo , Aminoácidos/metabolismo , Bases de Datos de Proteínas , Dipéptidos/metabolismo , Internet , Puntaje de Propensión , Reproducibilidad de los Resultados
17.
Biofouling ; 35(5): 573-584, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31282211

RESUMEN

Melioidosis is a severe disease caused by Burkholderia pseudomallei. The biofilm of B. pseudomallei acquires resistance to several antibiotics and may be related to relapse in melioidosis patients. Here, the killing activity of antimicrobial peptides (LL-37, LL-31) and the D-enantiomers (D-LL-37, D-LL-31) in combination with ceftazidime (CAZ) against B. pseudomallei 1026b, H777 and a biofilm mutant M10, derived from H777 grown under biofilm-stimulating conditions was observed. Using static conditions, D-LL-31 exhibited the strongest killing activity against the three isolates in a dose-dependent manner. IC50 values for D-LL-31 ranged from 1 to 6 µM, for isolates M10, H777, and 1026b, respectively. Moreover, D-LL-31 combined with CAZ synergistically decreased the IC50 values of the peptide and antibiotic and caused also disruption of biofilms of B. pseudomallei 1026b under flow conditions. Thus a combination of D-LL-31 and CAZ may enhance the efficacy of the currently used antibiotic treatments against B. pseudomallei.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Burkholderia pseudomallei/efectos de los fármacos , Catelicidinas/farmacología , Ceftazidima/farmacología , Péptidos/farmacología , Burkholderia pseudomallei/fisiología , Pruebas de Sensibilidad Microbiana
18.
PLoS One ; 14(3): e0213288, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30856240

RESUMEN

The biofilm-forming ability of Burkholderia pseudomallei is crucial for its survival in unsuitable environments and is correlated with antibiotic resistance and relapsing cases of melioidosis. Extracellular DNA (eDNA) is an essential component for biofilm development and maturation in many bacteria. The aim of this study was to investigate the eDNA released by B. pseudomallei during biofilm formation using DNase treatment. The extent of biofilm formation and quantity of eDNA were assessed by crystal-violet staining and fluorescent dye-based quantification, respectively, and visualized by confocal laser scanning microscopy (CLSM). Variation in B. pseudomallei biofilm formation and eDNA quantity was demonstrated among isolates. CLSM images of biofilms stained with FITC-ConA (biofilm) and TOTO-3 (eDNA) revealed the localization of eDNA in the biofilm matrix. A positive correlation of biofilm biomass with quantity of eDNA during the 2-day biofilm-formation observation period was found. The increasing eDNA quantity over time, despite constant living/dead ratios of bacterial cells during the experiment suggests that eDNA is delivered from living bacterial cells. CLSM images demonstrated that depletion of eDNA by DNase I significantly lessened bacterial attachment (if DNase added at 0 h) and biofilm developing stages (if added at 24 h) but had no effect on mature biofilm (if added at 45 h). Collectively, our results reveal that eDNA is released from living B. pseudomallei and is correlated with biofilm formation. It was also apparent that eDNA is essential during bacterial cell attachment and biofilm-forming steps. The depletion of eDNA by DNase may provide an option for the prevention or dispersal of B. pseudomallei biofilm.


Asunto(s)
Adhesión Bacteriana , Biopelículas/crecimiento & desarrollo , Burkholderia pseudomallei/patogenicidad , ADN Bacteriano/fisiología , Melioidosis/microbiología , ADN Bacteriano/análisis , Espacio Extracelular , Humanos
19.
Asian Pac J Cancer Prev ; 19(12): 3605-3613, 2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30583689

RESUMEN

Cholangiocarcinoma is a malignant tumor with high metastatic and mortality rates. We investigated the effects of rhinacanthin-C on cell proliferation, migration, invasion and the expression of proteins regulating cancer cell invasion-regulated proteins in a cholangiocarcinoma (KKU-M156) cell line. Cytotoxicity of rhinacanthin-C was determined by the SRB assay. Using wound-migration, chamber-migration and chamber-invasion assays, we assessed the effects of rhinacanthin-C against KKU-M156 cells. The activities of matrix metalloproteinases 2 and 9 (MMP-2, MMP-9) and urokinase-type plasminogen activator (uPA) were determined using gelatinase and uPA zymography assays. The expression of invasion-regulated proteins was investigated using western-blot analysis. After treatment with rhinacanthin-C, KKU-M156 cells exhibited antiproliferative effects in a dose-dependent manner with greater efficacy than in Vero cells: IC50 values were 1.50 and 2.37 µM, respectively. Rhinacanthin-C significantly inhibited cell migration and invasion of KKU-M156 cells in a dose-dependent manner. Consistent with this observation, treatment with rhinacanthin-C was associated with a decrease in the expression levels of FAK, p-FAK, MMP-2, and a decrease in the levels of p38-, JNK1/2- and ERK1/2-MAPK pathways as well as inhibiting NF-κB/p65 expression and translocation of NF-κB/p65 to the nucleus. We have shown for the first time that the anti-metastatic effects of rhinacanthin-C on KKU-M156 cells are mediated via inhibition of the expression of invasion-regulated proteins. Rhinacanthin-C may deserve consideration as a potential agent for the treatment of cholangiocarcinoma.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Colangiocarcinoma/tratamiento farmacológico , Quinasa 1 de Adhesión Focal/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Naftoquinonas/farmacología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Acanthaceae/química , Animales , Antineoplásicos/farmacología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chlorocebus aethiops , Colangiocarcinoma/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Invasividad Neoplásica/patología , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Células Vero
20.
PLoS One ; 13(3): e0194946, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29579106

RESUMEN

Burkholderia pseudomallei is the causative agent of melioidosis and regarded as a bioterrorism threat. It can adapt to the nutrient-limited environment as the bacteria can survive in triple distilled water for 16 years. Moreover, B. pseudomallei exhibits intrinsic resistance to diverse groups of antibiotics in particular while growing in biofilms. Recently, nutrient-limited condition influenced both biofilm formation and ceftazidime (CAZ) tolerance of B. pseudomallei were found. However, there is no information about how nutrient-limitation together with antibiotics used in melioidosis treatment affects the structure of the biofilm produced by B. pseudomallei. Moreover, no comparative study to investigate the biofilm architectures of B. pseudomallei and the related B. thailandensis under different nutrient concentrations has been reported. Therefore, this study aims to provide new information on the effects of four antibiotics used in melioidosis treatment, viz. ceftazidime (CAZ), imipenem (IMI), meropenem (MEM) and doxycycline (DOX) on biofilm architecture of B. pseudomallei and B. thailandensis with different nutrient concentrations under static and flow conditions using confocal laser scanning microscopy. Impact of nutritional stress on drug susceptibility of B. pseudomallei and B. thailandensis grown planktonically or as biofilm was also evaluated. The findings of this study indicate that nutrient-limited environment enhanced survival of B. pseudomallei in biofilm after exposure to the tested antibiotics. The shedding planktonic B. pseudomallei and B. thailandensis were also found to have increased CAZ tolerance in nutrient-limited environment. However, killing activities of MEM and IMI were stronger than CAZ and DOX on B. pseudomallei and B. thailandensis both in planktonic cells and in 2-day old biofilm. In addition, MEM and IMI were able to inhibit B. pseudomallei and B. thailandensis biofilm formation to a larger extend compared to CAZ and DOX. Differences in biofilm architecture were observed for biofilms grown under static and flow conditions. Under static conditions, biofilms grown in full strength modified Vogel and Bonner's medium (MVBM) showed honeycomb-like architecture while a knitted-like structure was observed under limited nutrient condition (0.1×MVBM). Under flow conditions, biofilms grown in MVBM showed a multilayer structure while merely dispersed bacteria were found when grown in 0.1×MVBM. Altogether, this study provides more insight on the effect of four antibiotics against B. pseudomallei and B. thailandensis in biofilm under different nutrient and flow conditions. Since biofilm formation is believed to be involved in disease relapse, MEM and IMI may be better therapeutic options than CAZ for melioidosis treatment.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Burkholderia/fisiología , Microfluídica/métodos , Antibacterianos/uso terapéutico , Biopelículas/crecimiento & desarrollo , Burkholderia/química , Burkholderia/crecimiento & desarrollo , Burkholderia pseudomallei/química , Burkholderia pseudomallei/crecimiento & desarrollo , Burkholderia pseudomallei/fisiología , Ceftazidima/farmacología , Doxiciclina/farmacología , Farmacorresistencia Bacteriana , Alimentos , Meropenem , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Tienamicinas/farmacología , Imagen de Lapso de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...