Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 67(4): 2963-2985, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38285511

RESUMEN

Structural analysis of tazemetostat, an FDA-approved EZH2 inhibitor, led us to pinpoint a suitable site for appendage with a pharmacophoric fragment of second-generation HSP90 inhibitors. Resultantly, a magnificent dual EZH2/HSP90 inhibitor was pinpointed that exerted striking cell growth inhibitory efficacy against TMZ-resistant Glioblastoma (GBM) cell lines. Exhaustive explorations of chemical probe 7 led to several revelations such as (i) compound 7 increased apoptosis/necrosis-related gene expression, whereas decreased M phase/kinetochore/spindle-related gene expression as well as CENPs protein expression in Pt3R cells; (ii) dual inhibitor 7 induced cell cycle arrest at the M phase; (iii) compound 7 suppressed reactive oxygen species (ROS) catabolism pathway, causing the death of TMZ-resistant GBM cells; and (iv) compound 7 elicited substantial in vivo anti-GBM efficacy in experimental mice xenografted with TMZ-resistant Pt3R cells. Collectively, the study results confirm the potential of dual EZH2-HSP90 inhibitor 7 as a tractable anti-GBM agent.


Asunto(s)
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Temozolomida/farmacología , Apoptosis , Resistencia a Antineoplásicos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Glioblastoma/metabolismo , Inhibidores Enzimáticos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico
2.
Sci Rep ; 7(1): 15959, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29162841

RESUMEN

Due to lack of normal samples in clinical diagnosis and to reduce costs, detection of small-scale mutations from tumor-only samples is required but remains relatively unexplored. We developed an algorithm (GATKcan) augmenting GATK with two statistics and machine learning to detect mutations in cancer. The averaged performance of GATKcan in ten experiments outperformed GATK in detecting mutations of randomly sampled 231 from 241 TCGA endometrial tumors (EC). In external validations, GATKcan outperformed GATK in TCGA breast cancer (BC), ovarian cancer (OC) and melanoma tumors, in terms of Matthews correlation coefficient (MCC) and precision, where MCC takes both sensitivity and specificity into account. Further, GATKcan reduced high fractions of false positives detected by GATK. In mutation detection of somatic variants, classified commonly by VarScan 2 and MuTect from the called variants in BC, OC and melanoma, ranked by adjusted MCC (adjusted precision) GATKcan was the top 1, followed by MuTect, VarScan 2 and GATK. Importantly, GATKcan enables detection of mutations when alternate alleles exist in normal samples. These results suggest that GATKcan trained by a cancer is able to detect mutations in future patients with the same type of cancer and is likely applicable to other cancers with similar mutations.


Asunto(s)
Secuenciación del Exoma , Mutación/genética , Neoplasias/genética , Algoritmos , Secuencia de Bases , Humanos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...