Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PNAS Nexus ; 2(10): pgad316, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37854707

RESUMEN

Residential landscapes are essential to the sustainability of large areas of the United States. However, spatial and temporal variation across multiple domains complicates developing policies to balance these systems' environmental, economic, and equity dimensions. We conducted multidisciplinary studies in the Baltimore, MD, USA, metropolitan area to identify locations (hotspots) or times (hot moments) with a disproportionate influence on nitrogen export, a widespread environmental concern. Results showed high variation in the inherent vulnerability/sensitivity of individual parcels to cause environmental damage and in the knowledge and practices of individual managers. To the extent that hotspots are the result of management choices by homeowners, there are straightforward approaches to improve outcomes, e.g. fertilizer restrictions and incentives to reduce fertilizer use. If, however, hotspots arise from the configuration and inherent characteristics of parcels and neighborhoods, efforts to improve outcomes may involve more intensive and complex interventions, such as conversion to alternative ecosystem types.

2.
Oecologia ; 202(2): 337-351, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286887

RESUMEN

Land-use change is highly dynamic globally and there is great uncertainty about the effects of land-use legacies on contemporary environmental performance. We used a chronosequence of urban grasslands (lawns) that were converted from agricultural and forested lands from 10 to over 130 years prior to determine if land-use legacy influences components of soil biodiversity and composition over time. We used historical aerial imagery to identify sites in Baltimore County, MD (USA) with agricultural versus forest land-use history. Soil samples were taken from these sites as well as from existing well-studied agricultural and forest sites used as historical references by the National Science Foundation Long-Term Ecological Research Baltimore Ecosystem Study program. We found that the microbiomes in lawns of agricultural origin were similar to those in agricultural reference sites, which suggests that the ecological parameters on lawns and reference agricultural systems are similar in how they influence soil microbial community dynamics. In contrast, lawns that were previously forest showed distinct shifts in soil bacterial composition upon recent conversion but reverted back in composition similar to forest soils as the lawns aged over decades. Soil fungal communities shifted after forested land was converted to lawns, but unlike bacterial communities, did not revert in composition over time. Our results show that components of bacterial biodiversity and composition are resistant to change in previously forested lawns despite urbanization processes. Therefore land-use legacy, depending on the prior use, is an important factor to consider when examining urban ecological homogenization.


Asunto(s)
Ecosistema , Microbiota , Suelo , Bosques , Biodiversidad , Urbanización , Microbiología del Suelo , Agricultura
4.
Commun Biol ; 5(1): 959, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104398

RESUMEN

Microbial experimental systems provide a platform to observe how networks of groups emerge to impact plant development. We applied selection pressure for microbiome enhancement of Brassica rapa biomass to examine adaptive bacterial group dynamics under soil nitrogen limitation. In the 9th and final generation of the experiment, selection pressure enhanced B. rapa seed yield and nitrogen use efficiency compared to our control treatment, with no effect between the random selection and control treatments. Aboveground biomass increased for both the high biomass selection and random selection plants. Soil bacterial diversity declined under high B. rapa biomass selection, suggesting a possible ecological filtering mechanism to remove bacterial taxa. Distinct sub-groups of interactions emerged among bacterial phyla such as Proteobacteria and Bacteroidetes in response to selection. Extended Local Similarity Analysis and NetShift indicated greater connectivity of the bacterial community, with more edges, shorter path lengths, and altered modularity through the course of selection for enhanced plant biomass. In contrast, bacterial communities under random selection and no selection showed less complex interaction profiles of bacterial taxa. These results suggest that group-level bacterial interactions could be modified to collectively shift microbiome functions impacting the growth of the host plant under soil nitrogen limitation.


Asunto(s)
Brassica rapa , Microbiota , Bacterias/genética , Brassica rapa/microbiología , Nitrógeno , Plantas , Rizosfera , Semillas , Suelo , Microbiología del Suelo
5.
New Phytol ; 234(6): 2101-2110, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34614202

RESUMEN

Climate change-related soil salinization increases plant stress and decreases productivity. Soil microorganisms are thought to reduce salt stress through multiple mechanisms, so diverse assemblages could improve plant growth under such conditions. Previous studies have shown that microbiome selection can promote desired plant phenotypes, but with high variability. We hypothesized that microbiome selection would be more consistent in saline soils by increasing potential benefits to the plants. In both salt-amended and untreated soils, we transferred forward Brassica rapa root microbiomes (from high-biomass or randomly selected pots) across six planting generations while assessing bacterial (16S rRNA) and fungal (ITS) composition in detail. Uniquely, we included an add-back control (re-adding initial frozen soil microbiome) as a within-generation reference for microbiome and plant phenotype selection. We observed inconsistent effects of microbiome selection on plant biomass across generations, but microbial composition consistently diverged from the add-back control. Although salt amendment strongly impacted microbial composition, it did not increase the predictability of microbiome effects on plant phenotype, but it did increase the rate at which microbiome selection plateaued. These data highlight a disconnect in the trajectories of microbiomes and plant phenotypes during microbiome selection, emphasizing the role of standard controls to explain microbiome selection outcomes.


Asunto(s)
Microbiota , Suelo , Microbiota/genética , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Microbiología del Suelo
6.
Front Plant Sci ; 11: 1171, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32849726

RESUMEN

Communities of microorganisms in the soil can affect plants' growth and interactions with aboveground herbivores. Thus, there is growing interest in utilizing soil microbiomes to improve plant performance in agriculture (e.g., for pest control), but little is known about the phenotypic responses of various crop species to different microbiomes. In this study, we inoculated four crop species from different botanical families, maize (Zea mays, Poaceae), cucumber (Cucumis sativus, Cucurbitaceae), tomato (Solanum lycopersicum, Solanaceae), and lettuce (Lactuca sativa, Asteraceae), with diverse soil microbiomes originating from actively-managed agricultural fields or fallow fields under varying stages of succession (1, 3, and 16-years post-agriculture) sourced from a large-scale field experiment. We compared the crops' responses to these different microbiomes by assessing their growth and resistance to two generalist insect pests, cabbage looper (Trichoplusia ni) and fall armyworm (Spodoptera frugiperda). These different microbiomes affected both plant growth and resistance, but the effects were species-specific. For instance, lettuce produced the largest leaves when inoculated with a 3-year fallow microbiome, the microbiome in which cucumber performed worst. Plants were generally more resistant to T. ni when inoculated with the later succession microbiomes, particularly in contrast to those treated with agricultural microbiomes. However, for tomato plants, the opposite pattern was observed with regard to S. frugiperda resistance. Collectively, these results indicate that plant responses to microbiomes are species-specific and emphasize the need to characterize the responses of taxonomically diverse plant species to different microbiomes.

7.
New Phytol ; 226(4): 1144-1157, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31943213

RESUMEN

Soil microorganisms can influence the development of complex plant phenotypes, including resistance to herbivores. This microbiome-mediated plasticity may be particularly important for plant species that persist in environments with drastically changing herbivore pressure, for example over community succession. We established a 15-yr gradient of old-field succession to examine the herbivore resistance and rhizosphere microbial communities of Solidago altissima plants in a large-scale field experiment. To assess the functional effects of these successional microbial shifts, we inoculated S. altissima plants with microbiomes from the 2nd , 6th and 15th successional years in a glasshouse and compared their herbivore resistance. The resistance of S. altissima plants to herbivores changed over succession, with concomitant shifts in the rhizosphere microbiome. Late succession microbiomes conferred the strongest herbivore resistance to S. altissima plants in a glasshouse experiment, paralleling the low levels of herbivory observed in the oldest communities in the field. While many factors change over succession and may contribute to the shifts in rhizosphere communities and herbivore resistance we observed, our results indicated that soil microbial shifts alone can alter plants' interactions with herbivores. Our findings suggest that changes in soil microbial communities over succession can play an important role in enhancing plant resistance to herbivores.


Asunto(s)
Herbivoria , Solidago , Fenotipo , Rizosfera , Suelo
8.
Front Microbiol ; 10: 256, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30853947

RESUMEN

Despite decades of research, our understanding of the importance of invertebrates for soil biogeochemical processes remains incomplete. This is especially true when considering soil invertebrate effects mediated through their interactions with soil microbes. The aim of this study was to elucidate how soil macroinvertebrates affect soil microbial community composition and function within the root zone of a managed grass system. We conducted a 2-year field mesocosm study in which soil macroinvertebrate communities were manipulated through size-based exclusion and tracked changes in microbial community composition, diversity, biomass and activity to quantify macroinvertebrate-driven effects on microbial communities and their functions within the rhizosphere. The presence of soil macroinvertebrates created distinct microbial communities and altered both microbial biomass and function. Soil macroinvertebrates increased bacterial diversity and fungal biomass, as well as increased phenol oxidase and glucosidase activities, which are important in the degradation of organic matter. Macroinvertebrates also caused distinct shifts in the relative abundance of different bacterial phyla. Our findings indicate that within the rhizosphere, macroinvertebrates have a stimulatory effect on microbial communities and processes, possibly due to low-intensity microbial grazing or through the dispersal of microbial cells and spores by mobile invertebrates. Our results suggest that macroinvertebrate activity can be an important control on microbially-mediated processes in the rhizosphere such as nitrogen mineralization and soil organic matter formation.

9.
Sci Rep ; 8(1): 11039, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30038291

RESUMEN

The microbiome of a vineyard may play a critical role in fruit development, and consequently, may impact quality properties of grape and wine. Vineyard management approaches that have directly manipulated the microbiome of grape clusters have been studied, but little is known about how vineyard management practices that impact the soil microbial pool can influence this dynamic. We examined three under-vine soil management practices: 1) herbicide application, 2) soil cultivation (vegetation removal), and 3) natural vegetation (no vegetation removal) in a Riesling vineyard in New York over a three-year period. The microbiomes associated with soil and grapes were profiled using high-throughput sequencing of the bacterial 16 S rRNA gene and fungal ITS regions. Our results showed that soil bacterial composition under natural vegetation differs from that seen in glyphosate-maintained bare soil. Soil fungal composition under the natural vegetation treatment was distinct from other treatments. Although our study revealed soil microbiome shifts based on under-vine management, there were no corresponding changes in fruit-associated microbial composition. These results suggested that other vineyard management practices or environmental factors are more influential in shaping the grape-associated microbiome.


Asunto(s)
Granjas , Frutas/microbiología , Microbiología del Suelo , Vitis/microbiología , Frutas/efectos de los fármacos , Herbicidas/efectos adversos , ARN Ribosómico 16S/genética , Vitis/efectos de los fármacos
10.
Front Microbiol ; 9: 1516, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050510

RESUMEN

Plant rhizospheres encompass a dynamic zone of interactions between microorganisms and their respective plant hosts. For decades, researchers have worked to understand how these complex interactions influence different aspects of plant growth, development, and evolution. Studies of plant-microbial interactions in the root zone have typically focused on the effect of single microbial species or strains on a plant host. These studies, however, provide only a snapshot of the complex interactions that occur in the rhizosphere, leaving researchers with a limited understanding of how the complex microbiome influences the biology of the plant host. To better understand how rhizosphere interactions influence plant growth and development, novel frameworks and research methodologies could be implemented. In this perspective, we propose applying concepts in evolutionary biology to microbiome experiments for improved understanding of group-to-group and community-level microbial interactions influencing soil nutrient cycling. We also put forth simple experimental designs utilizing -omics techniques that can reveal important changes in the rhizosphere impacting the plant host. A greater focus on the components of complexity of the microbiome and how these impact plant host biology could yield more insight into previously unexplored aspects of host-microbe biology relevant to crop production and protection.

11.
Sci Rep ; 7(1): 9477, 2017 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-28842699

RESUMEN

The incorporation of extraneous nitrogen (N) into amino sugars (AS) could reflect the contribution of microbial residues to soil N transformation. Investigating the impact of drying-wetting (DW) on dynamics of newly-produced AS is critical because this represents microbial-driven N retention/losses in soil. A 36-day incubation of soil samples was conducted under different drying intensities, using 15N-labelled-(NH4)2SO4 as an N source together with/without glucose addition. There were multiple DW periods and they ranged from a constant moisture content treatment, to a one day drying (low-drying-intensity, LD), a two day drying (medium-drying-intensity, MD), or a three day drying event (severe-drying-intensity, SD). The immobilization of added-N was restricted in DW when available carbon was not added, thus glucose addition increased the effect of DW on the incorporation of added-N into AS. The response of total 15N-AS to DW varied depending on drying intensities. The MD was beneficial to the incorporation of added-N into total 15N-AS, while total 15N-AS contents were low in SD treatment. The effect of DW on contribution of bacterial and fungal residues to N transformation was also related to drying intensities. Our study indicated that DW altered microbial transformation of added-N, and the effect was drying intensity-specific, and available carbon-dependent.

12.
FEMS Microbiol Lett ; 364(11)2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28472491

RESUMEN

We show that choice of soil microbiome transfer method, i.e. direct soil transfers and a common soil wash procedure, dramatically influences the microbiome that develops in a new environment, using high-throughput amplicon sequencing of 16S rRNA genes and the fungal internal transcribed spacer (ITS) region. After 3 weeks of incubation in commercial potting mix, microbiomes were most similar to the source soil when a greater volume of initial soil was transferred (5% v/v transfer), and least similar when using a soil wash. Abundant operational taxonomic units were substantially affected by transfer method, suggesting that compounds transferred from the source soil, shifts in biotic interactions, or both, play an important role in their success.


Asunto(s)
ADN Bacteriano/aislamiento & purificación , ADN de Hongos/aislamiento & purificación , Microbiota , ARN Ribosómico 16S/aislamiento & purificación , Microbiología del Suelo , Bacterias/clasificación , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN de Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
13.
FEMS Microbiol Ecol ; 93(5)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28499007

RESUMEN

Understanding soil CO2 flux temperature sensitivity (Q10) is critical for predicting ecosystem-level responses to climate change. Yet, the effects of warming on microbial CO2 respiration still remain poorly understood under current Earth system models, partly as a result of thermal acclimation of organic matter decomposition. We conducted a 117-day incubation experiment under constant and diurnally varying temperature treatments based on four forest soils varying in vegetation stand and soil horizon. Our results showed that Q10 was greater under varying than constant temperature regimes. This distinction was most likely attributed to differences in the depletion of available carbon between constant high and varying high-temperature treatments, resulting in significantly higher rates of heterotrophic respiration in the varying high-temperature regime. Based on 16S rRNA gene sequencing data using Illumina, the varying high-temperature regime harbored higher prokaryotic alpha-diversity, was more dominated by the copiotrophic strategists and sustained a distinct community composition, in comparison to the constant-high treatment. We found a tightly coupled relationship between Q10 and microbial trophic guilds: the copiotrophic prokaryotes responded positively with high Q10 values, while the oligotrophs showed a negative response. Effects of vegetation stand and soil horizon consistently supported that the copiotrophic vs oligotrophic strategists determine the thermal sensitivity of CO2 flux. Our observations suggest that incorporating prokaryotic functional traits, such as shifts between copiotrophy and oligotrophy, is fundamental to our understanding of thermal acclimation of microbially mediated soil organic carbon cycling. Inclusion of microbial functional shifts may provide the potential to improve our projections of responses in microbial community and CO2 efflux to a changing environment in forest ecosystems.


Asunto(s)
Aclimatación/fisiología , Bacterias/metabolismo , Dióxido de Carbono/metabolismo , Cambio Climático , Ecosistema , Bosques , Procesos Heterotróficos , Calor , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo
14.
Microb Ecol ; 73(2): 394-403, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27655524

RESUMEN

The collection of microorganisms found in the root zone of soil, termed the rhizosphere microbiome, has been shown to impact plant growth and development. Here, we tease apart the function of the cultivable portion of the microbiome from the whole microbiome in retaining plant traits modified through artificial selection on flowering time. Specifically, the whole microbiome associated with earlier flowering time of Arabidopsis thaliana was cultivated on four types of solid media to create cultivated fractions of the microbiome. These cultivated microbiomes were subsequently preserved in glycerol, frozen, and revived to yield a portion of the cultivable fraction to compare (1) whole microbiome, (2) cultivable microbiome, and (3) revived, cultivable microbiome controls on early flowering time. Plants grown in soils inoculated with bacteria grown on 25 % Luria broth and 10 % tryptic soy agar retained the early flowering trait. An increase in leaf biomass with two of the cultivated microbiomes (49.4 and 38.5 %) contrasted the lowered biomass effect of the whole microbiome. Inoculation with the cultivated microbiomes that were cryopreserved in glycerol showed no effect on flowering time or leaf biomass. The results indicate that the cultivable portion of a plant's microbiome retains the early flowering effect in A. thaliana, but cryopreservation of the cultivated microbiomes disrupts the microbial effects on flowering time. Furthermore, the contrasting effects on leaf biomass (an indirect response from selection on early flowering time), seen with the whole microbiome versus the cultivable portion, suggests versatility in using cultivation methods to modify multiple traits of plants.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Magnoliopsida/microbiología , Microbiota/fisiología , Microbiología del Suelo , Suelo/química , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Secuencia de Bases , Biomasa , Medios de Cultivo , ADN Bacteriano , Flores/crecimiento & desarrollo , Microbiota/genética , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia
15.
PLoS One ; 11(5): e0155986, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27243768

RESUMEN

Urban grasslands, landscapes dominated by turfgrasses for aesthetic or recreational groundcovers, are rapidly expanding in the United States and globally. These managed ecosystems are often less diverse than the natural or agricultural lands they replace, leading to potential losses in ecosystem functioning. Research in non-urban systems has provided evidence for increases in multiple ecosystem functions associated with greater plant diversity. To test if biodiversity-ecosystem function findings are applicable to urban grasslands, we examined the effect of plant species and genotypic diversity on three ecosystem functions, using grassland assemblages of increasing diversity that were grown within a controlled environment facility. We found positive effects of plant diversity on reduced nitrate leaching and plant productivity. Soil microbial diversity (Mean Shannon Diversity, H') of bacteria and fungi were also enhanced in multi-species plantings, suggesting that moderate increments in plant diversity influence the composition of soil biota. The results from this study indicate that plant diversity impacts multiple functions that are important in urban ecosystems; therefore, further tests of urban grassland biodiversity should be examined in situ to determine the feasibility of manipulating plant diversity as an explicit landscape design and function trait.


Asunto(s)
Bacterias/clasificación , Hongos/clasificación , Pradera , Nitratos/análisis , Poaceae/clasificación , Bacterias/genética , Biodiversidad , Hongos/genética , Genotipo , Microbiota/genética , Nitratos/química , Poaceae/genética , Suelo , Microbiología del Suelo
16.
Glob Chang Biol ; 21(7): 2804-2817, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25644281

RESUMEN

Permafrost-affected soils of the northern circumpolar region represent 50% of the terrestrial soil organic carbon (SOC) reservoir and are most strongly affected by climatic change. There is growing concern that this vast SOC pool could transition from a net C sink to a source. But so far little is known on how the organic matter (OM) in permafrost soils will respond in a warming future, which is governed by OM composition and possible stabilization mechanisms. To investigate if and how SOC in the active layer and adjacent permafrost is protected against degradation, we employed density fractionation to separate differently stabilized SOM fractions. We studied the quantity and quality of OM in different compartments using elemental analysis, 13 C solid-phase nuclear magnetic resonance (13 C-NMR) spectroscopy, and 14 C analyses. The soil samples were derived from 16 cores from drained thaw lake basins, ranging from 0 to 5500 years of age, representing a unique series of developing Arctic soils over time. The normalized SOC stocks ranged between 35.5 and 86.2 kg SOC m-3 , with the major amount of SOC located in the active layers. The SOC stock is dominated by large amounts of particulate organic matter (POM), whereas mineral-associated OM especially in older soils is of minor importance on a mass basis. We show that tremendous amounts of over 25 kg OC per square meter are stored as presumably easily degradable OM rich in carbohydrates. Only about 10 kg OC per square meter is present as presumably more stable, mineral-associated OC. Significant amounts of the easily degradable, carbohydrate-rich OM are preserved in the yet permanently frozen soil below the permafrost table. Forced by global warming, this vast labile OM pool could soon become available for microbial degradation due to the continuous deepening of the annually thawing active layer.

17.
ISME J ; 9(4): 980-9, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25350154

RESUMEN

Soil microorganisms found in the root zone impact plant growth and development, but the potential to harness these benefits is hampered by the sheer abundance and diversity of the players influencing desirable plant traits. Here, we report a high level of reproducibility of soil microbiomes in altering plant flowering time and soil functions when partnered within and between plant hosts. We used a multi-generation experimental system using Arabidopsis thaliana Col to select for soil microbiomes inducing earlier or later flowering times of their hosts. We then inoculated the selected microbiomes from the tenth generation of plantings into the soils of three additional A. thaliana genotypes (Ler, Be, RLD) and a related crucifer (Brassica rapa). With the exception of Ler, all other plant hosts showed a shift in flowering time corresponding with the inoculation of early- or late-flowering microbiomes. Analysis of the soil microbial community using 16 S rRNA gene sequencing showed distinct microbiota profiles assembling by flowering time treatment. Plant hosts grown with the late-flowering-associated microbiomes showed consequent increases in inflorescence biomass for three A. thaliana genotypes and an increase in total biomass for B. rapa. The increase in biomass was correlated with two- to five-fold enhancement of microbial extracellular enzyme activities associated with nitrogen mineralization in soils. The reproducibility of the flowering phenotype across plant hosts suggests that microbiomes can be selected to modify plant traits and coordinate changes in soil resource pools.


Asunto(s)
Flores/crecimiento & desarrollo , Microbiota , Microbiología del Suelo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Biomasa , Brassica rapa/crecimiento & desarrollo , Genotipo , Reproducibilidad de los Resultados , Suelo/química
18.
Microb Ecol ; 66(3): 621-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23784452

RESUMEN

Rising atmospheric CO(2) levels alter the physiology of many plant species, but little is known of changes to root dynamics that may impact soil microbial mediation of greenhouse gas emissions from wetlands. We grew co-occurring wetland plant species that included an invasive reed canary grass (Phalaris arundinacea L.) and a native woolgrass (Scirpus cyperinus L.) in a controlled greenhouse facility under ambient (380 ppm) and elevated atmospheric CO(2) (700 ppm). We hypothesized that elevated atmospheric CO(2) would increase the abundance of both archaeal methanogen and bacterial methanotroph populations through stimulation of plant root and shoot biomass. We found that methane levels emitted from S. cyperinus shoots increased 1.5-fold under elevated CO(2), while no changes in methane levels were detected from P. arundincea. The increase in methane emissions was not explained by enhanced root or shoot growth of S. cyperinus. Principal components analysis of the total phospholipid fatty acid (PLFA) recovered from microbial cell membranes revealed that elevated CO(2) levels shifted the composition of the microbial community under S. cyperinus, while no changes were detected under P. arundinacea. More detailed analysis of microbial abundance showed no impact of elevated CO(2) on a fatty acid indicative of methanotrophic bacteria (18:2ω6c), and no changes were detected in the terminal restriction fragment length polymorphism (T-RFLP) relative abundance profiles of acetate-utilizing archaeal methanogens. Plant carbon depleted in (13)C was traced into the PLFAs of soil microorganisms as a measure of the plant contribution to microbial PLFA. The relative contribution of plant-derived carbon to PLFA carbon was larger in S. cyperinus compared with P. arundinacea in four PLFAs (i14:0, i15:0, a15:0, and 18:1ω9t). The δ(13)C isotopic values indicate that the contribution of plant-derived carbon to microbial lipids could differ in rhizospheres of CO(2)-responsive plant species, such as S. cyperinus in this study. The results from this study show that the CO(2)-methane link found in S. cyperinus can occur without a corresponding change in methanogen and methanotroph relative abundances, but PLFA analysis indicated shifts in the community profile of bacteria and fungi that were unique to rhizospheres under elevated CO(2).


Asunto(s)
Aire/análisis , Archaea/metabolismo , Bacterias/metabolismo , Dióxido de Carbono/análisis , Metano/análisis , Poaceae/microbiología , Microbiología del Suelo , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Dióxido de Carbono/metabolismo , Ecosistema , Ácidos Grasos/metabolismo , Metano/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Poaceae/metabolismo , Especificidad de la Especie
19.
Microb Ecol ; 56(1): 55-63, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17912579

RESUMEN

Exotic plant invasions into Hawaiian montane forests have altered many important nutrient cycling processes and pools. Across different ecosystems, researchers are uncovering the mechanisms involved in how invasive plants impact the soil microbial community-the primary mediator of soil nutrient cycling. We examined whether the invasive plant, Hedychium gardnerianum, altered microbial community composition in forests dominated by a native tree, Metrosideros polymorpha, under varying soil nutrient limitations and soil fertility properties within forest plots of the Hawaii long-term substrate age gradient (LSAG). Microbial community lipid analysis revealed that when nutrient limitation (as determined by aboveground net primary production [ANPP]) and soil fertility were taken into account, plant species differentially altered soil microbial community composition. Microbial community characteristics differed under invasive and native plants primarily when N or P was added to the older, highly weathered, P-limited soils. Long-term fertilization with N or P at the P-limited site led to a significant increase in the relative abundance of the saprophytic fungal indicator (18:2 omega 6c,9c) under the invasive plant. In the younger, N-limited soils, plant species played a minor role in influencing soil microbial community composition. We found that the general rhizosphere microbial community structure was determined more by soil fertility than by plant species. This study indicates that although the aggressive invasion of a nutrient-demanding, rapidly decomposable, and invasive plant into Hawaiian forests had large impacts on soil microbial decomposers, relatively little impact occurred on the overall soil microbial community structure. Instead, soil nutrient conditions were more important determinants of the overall microbial community structure within Hawaii's montane forests.


Asunto(s)
Ecosistema , Myrtaceae/crecimiento & desarrollo , Microbiología del Suelo , Suelo/análisis , Zingiberaceae/crecimiento & desarrollo , Hongos/crecimiento & desarrollo , Bacterias Gramnegativas/crecimiento & desarrollo , Hawaii , Myrtaceae/clasificación , Myrtaceae/microbiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Raíces de Plantas/microbiología , Análisis de Componente Principal , Zingiberaceae/clasificación , Zingiberaceae/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...