Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.718
Filtrar
1.
JCO Clin Cancer Inform ; 8: e2300159, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38728613

RESUMEN

PURPOSE: We present and validate a rule-based algorithm for the detection of moderate to severe liver-related immune-related adverse events (irAEs) in a real-world patient cohort. The algorithm can be applied to studies of irAEs in large data sets. METHODS: We developed a set of criteria to define hepatic irAEs. The criteria include: the temporality of elevated laboratory measurements in the first 2-14 weeks of immune checkpoint inhibitor (ICI) treatment, steroid intervention within 2 weeks of the onset of elevated laboratory measurements, and intervention with a duration of at least 2 weeks. These criteria are based on the kinetics of patients who experienced moderate to severe hepatotoxicity (Common Terminology Criteria for Adverse Events grades 2-4). We applied these criteria to a retrospective cohort of 682 patients diagnosed with hepatocellular carcinoma and treated with ICI. All patients were required to have baseline laboratory measurements before and after the initiation of ICI. RESULTS: A set of 63 equally sampled patients were reviewed by two blinded, clinical adjudicators. Disagreements were reviewed and consensus was taken to be the ground truth. Of these, 25 patients with irAEs were identified, 16 were determined to be hepatic irAEs, 36 patients were nonadverse events, and two patients were of indeterminant status. Reviewers agreed in 44 of 63 patients, including 19 patients with irAEs (0.70 concordance, Fleiss' kappa: 0.43). By comparison, the algorithm achieved a sensitivity and specificity of identifying hepatic irAEs of 0.63 and 0.81, respectively, with a test efficiency (percent correctly classified) of 0.78 and outcome-weighted F1 score of 0.74. CONCLUSION: The algorithm achieves greater concordance with the ground truth than either individual clinical adjudicator for the detection of irAEs.


Asunto(s)
Algoritmos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Hepáticas , Humanos , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Estudios Retrospectivos , Fenotipo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/diagnóstico , Carcinoma Hepatocelular/tratamiento farmacológico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Hígado/patología , Hígado/efectos de los fármacos , Hígado/inmunología
2.
ACS Biomater Sci Eng ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718147

RESUMEN

Encapsulation of single cells is a powerful technique used in various fields, such as regenerative medicine, drug delivery, tissue regeneration, cell-based therapies, and biotechnology. It offers a method to protect cells by providing cytocompatible coatings to strengthen cells against mechanical and environmental perturbations. Silk fibroin, derived from the silkworm Bombyx mori, is a promising protein biomaterial for cell encapsulation due to the cytocompatibility and capacity to maintain cell functionality. Here, THP-1 cells, a human leukemia monocytic cell line, were encapsulated with chemically modified silk polyelectrolytes through electrostatic layer-by-layer deposition. The effectiveness of the silk nanocoating was assessed using scanning electron microscopy (SEM) and confocal microscopy and on cell viability and proliferation by Alamar Blue assay and live/dead staining. An analysis of the mechanical properties of the encapsulated cells was conducted using atomic force microscopy nanoindentation to measure elasticity maps and cellular stiffness. After the cells were encapsulated in silk, an increase in their stiffness was observed. Based on this observation, we developed a mechanical predictive model to estimate the variations in stiffness in relation to the thickness of the coating. By tuning the cellular assembly and biomechanics, these encapsulations promote systems that protect cells during biomaterial deposition or processing in general.

3.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712117

RESUMEN

Tissue engineering is a dynamic field focusing on the creation of advanced scaffolds for tissue and organ regeneration. These scaffolds are customized to their specific applications and are often designed to be complex, large structures to mimic tissues and organs. This study addresses the critical challenge of effectively characterizing these thick, optically opaque scaffolds that traditional imaging methods fail to fully image due to their optical limitations. We introduce a novel multi-modal imaging approach combining ultrasound, photoacoustic, and acoustic radiation force impulse imaging. This combination leverages its acoustic-based detection to overcome the limitations posed by optical imaging techniques. Ultrasound imaging is employed to monitor the scaffold structure, photoacoustic imaging is employed to monitor cell proliferation, and acoustic radiation force impulse imaging is employed to evaluate the homogeneity of scaffold stiffness. We applied this integrated imaging system to analyze melanoma cell growth within silk fibroin protein scaffolds with varying pore sizes and therefore stiffness over different cell incubation periods. Among various materials, silk fibroin was chosen for its unique combination of features including biocompatibility, tunable mechanical properties, and structural porosity which supports extensive cell proliferation. The results provide a detailed mesoscale view of the scaffolds' internal structure, including cell penetration depth and biomechanical properties. Our findings demonstrate that the developed multimodal imaging technique offers comprehensive insights into the physical and biological dynamics of tissue-engineered scaffolds. As the field of tissue engineering continues to advance, the importance of non-ionizing and non-invasive imaging systems becomes increasingly evident, and by facilitating a deeper understanding and better characterization of scaffold architectures, such imaging systems are pivotal in driving the success of future tissue-engineering solutions.

7.
ACS Biomater Sci Eng ; 10(5): 2945-2955, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38669114

RESUMEN

Metal-coordination bonds, a highly tunable class of dynamic noncovalent interactions, are pivotal to the function of a variety of protein-based natural materials and have emerged as binding motifs to produce strong, tough, and self-healing bioinspired materials. While natural proteins use clusters of metal-coordination bonds, synthetic materials frequently employ individual bonds, resulting in mechanically weak materials. To overcome this current limitation, we rationally designed a series of elastin-like polypeptide templates with the capability of forming an increasing number of intermolecular histidine-Ni2+ metal-coordination bonds. Using single-molecule force spectroscopy and steered molecular dynamics simulations, we show that templates with three histidine residues exhibit heterogeneous rupture pathways, including the simultaneous rupture of at least two bonds with more-than-additive rupture forces. The methodology and insights developed improve our understanding of the molecular interactions that stabilize metal-coordinated proteins and provide a general route for the design of new strong, metal-coordinated materials with a broad spectrum of dissipative time scales.


Asunto(s)
Histidina , Simulación de Dinámica Molecular , Níquel , Histidina/química , Níquel/química , Elastina/química , Proteínas/química , Péptidos/química
8.
Nat Genet ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632349

RESUMEN

We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.

9.
Phys Rev Lett ; 132(14): 141604, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640365

RESUMEN

The phenomenon of unpaired Weyl fermions appearing on the sole 2n-dimensional boundary of a (2n+1)-dimensional manifold with massive Dirac fermions was recently analyzed in D. B. Kaplan [preceding Letter, Chiral gauge theory at the boundary between topological phases, Phys. Rev. Lett. 132, 141603 (2024).PRLTAO0031-900710.1103/PhysRevLett.132.141603]. In this Letter, we show that similar unpaired Weyl edge states can be seen on a finite lattice. In particular, we consider the discretized Hamiltonian for a Wilson fermion in (2+1) dimensions with a 1+1 dimensional boundary and continuous time. We demonstrate that the low lying boundary spectrum is indeed Weyl-like: it has a linear dispersion relation and definite chirality and circulates in only one direction around the boundary. We comment on how our results are consistent with Nielsen-Ninomiya theorem. This work removes one potential obstacle facing the program outlined in D. B. Kaplan, preceding Letter, for regulating chiral gauge theories.

10.
Phys Rev Lett ; 132(14): 141603, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640394

RESUMEN

I demonstrate how chiral fermions with an exact gauge symmetry can appear on the d-dimensional boundary of a finite volume (d+1)-dimensional manifold, without any light mirror partners. The condition for the d-dimensional boundary theory to be local is that gauge anomalies cancel and that the volume be large. This can likely be achieved on a lattice and provides a new paradigm for the lattice regularization of chiral gauge theories.

11.
Stem Cell Reports ; 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579710

RESUMEN

Here, we used single-cell RNA sequencing (scRNA-seq), single-cell ATAC sequencing (scATAC-seq), and single-cell spatial transcriptomics to characterize murine cortical OPCs throughout postnatal life. During development, we identified two groups of differentially localized PDGFRα+ OPCs that are transcriptionally and epigenetically distinct. One group (active, or actOPCs) is metabolically active and enriched in white matter. The second (homeostatic, or hOPCs) is less active, enriched in gray matter, and predicted to derive from actOPCs. In adulthood, these two groups are transcriptionally but not epigenetically distinct, and relative to developing OPCs are less active metabolically and have less open chromatin. When adult oligodendrogenesis is enhanced during experimentally induced remyelination, adult OPCs do not reacquire a developmental open chromatin state, and the oligodendrogenesis trajectory is distinct from that seen neonatally. These data suggest that there are two OPC groups subserving distinct postnatal functions and that neonatal and adult OPC-mediated oligodendrogenesis are fundamentally different.

12.
Eur J Clin Invest ; : e14207, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558028

RESUMEN

BACKGROUND: Cytometric analysis has been commonly used to delineate distinct cell subpopulations among peripheral blood mononuclear cells by the differential expression of surface receptors. This capability has reached its apogee with high-dimensional approaches such as mass cytometry and spectral cytometry that include simultaneous assessment of 20-50 analytes. Unfortunately, this approach also engenders significant complexity with analytical and interpretational pitfalls. METHODS: Here, we demonstrate a complementary approach with restricted-dimensionality to assess cell-type specific intracellular molecular expression levels at exceptional levels of precision. The expression of five analytes was individually assessed in four mononuclear cell-types from peripheral blood. RESULTS: Distinctions in expression levels were seen between cell-types and between samples from different donor groups. Mononuclear cell-type specific molecular expression levels distinguished pregnant from nonpregnant women and G-CSF-treated from untreated persons. Additionally, the precision of our analysis was sufficient to quantify a novel relationship between two molecules-Rel A and translocator protein-by correlational analysis. CONCLUSIONS: Restricted-dimensional cytometry can provide a complementary approach to define characteristics of cell-type specific intracellular protein and phosphoantigen expression in mononuclear cells.

13.
CMAJ ; 196(13): E432-E440, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38589026

RESUMEN

BACKGROUND: Variations in primary care practices may explain some differences in health outcomes during the COVID-19 pandemic. We sought to evaluate the characteristics of primary care practices by the proportion of patients unvaccinated against SARS-CoV-2. METHODS: We conducted a population-based, cross-sectional cohort study using linked administrative data sets in Ontario, Canada. We calculated the percentage of patients unvaccinated against SARS-CoV-2 enrolled with each comprehensive-care family physician, ranked physicians according to the proportion of patients unvaccinated, and identified physicians in the top 10% (v. the other 90%). We compared characteristics of family physicians and their patients in these 2 groups using standardized differences. RESULTS: We analyzed 9060 family physicians with 10 837 909 enrolled patients. Family physicians with the largest proportion (top 10%) of unvaccinated patients (n = 906) were more likely to be male, to have trained outside of Canada, to be older, and to work in an enhanced fee-for-service model than those in the remaining 90%. Vaccine coverage (≥ 2 doses of SARS-CoV-2 vaccine) was 74% among patients of physicians with the largest proportion of unvaccinated patients, compared with 87% in the remaining patient population. Patients in the top 10% group tended to be younger and live in areas with higher levels of ethnic diversity and immigration and lower incomes. INTERPRETATION: Primary care practices with the largest proportion of patients unvaccinated against SARS-CoV-2 served marginalized communities and were less likely to use team-based care models. These findings can guide resource planning and help tailor interventions to integrate public health priorities within primary care practices.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Masculino , Femenino , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Estudios Transversales , Pandemias , Médicos de Familia , Ontario/epidemiología , Estudios de Cohortes , Atención Primaria de Salud
14.
J Clin Med ; 13(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38592374

RESUMEN

Background: The mechanism of lithium treatment responsiveness in bipolar disorder (BD) remains unclear. The aim of this study was to explore the utility of correlation coefficients and protein-to-protein interaction (PPI) network analyses of intracellular proteins in monocytes and CD4+ lymphocytes of patients with BD in studying the potential mechanism of lithium treatment responsiveness. Methods: Patients with bipolar I or II disorder who were diagnosed with the MINI for DSM-5 and at any phase of the illness with at least mild symptom severity and received lithium (serum level ≥ 0.6 mEq/L) for 16 weeks were divided into two groups, responders (≥50% improvement in Montgomery-Asberg Depression Rating Scale and/or Young Mania Rating Scale scores from baseline) and non-responders. Twenty-eight intracellular proteins/analytes in CD4+ lymphocytes and monocytes were analyzed with a tyramine-based signal-amplified flow cytometry procedure. Correlation coefficients between analytes at baseline were estimated in both responders and non-responders and before and after lithium treatment in responders. PPI network, subnetwork, and pathway analyses were generated based on fold change/difference in studied proteins/analytes between responders and non-responders. Results: Of the 28 analytes from 12 lithium-responders and 11 lithium-non-responders, there were more significant correlations between analytes in responders than in non-responders at baseline. Of the nine lithium responders with pre- and post-lithium blood samples available, the correlations between most analytes were weakened after lithium treatment with cell-type specific patterns in CD4+ lymphocytes and monocytes. PPI network/subnetwork and pathway analyses showed that lithium response was involved in four pathways, including prolactin, leptin, neurotrophin, and brain-derived neurotrophic factor pathways. Glycogen synthase kinase 3 beta and nuclear factor NF-kappa-B p65 subunit genes were found in all four pathways. Conclusions: Using correlation coefficients, PPI network/subnetwork, and pathway analysis with multiple intracellular proteins appears to be a workable concept for studying the mechanism of lithium responsiveness in BD. Larger sample size studies are necessary to determine its utility.

15.
Curr Protoc ; 4(4): e1027, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38588063

RESUMEN

The development of patient-derived intestinal organoids represents an invaluable model for simulating the native human intestinal epithelium. These stem cell-rich cultures outperform commonly used cell lines like Caco-2 and HT29-MTX in reflecting the cellular diversity of the native intestinal epithelium after differentiation. In our recent study examining the effects of polystyrene (PS), microplastics (MPs), and nanoplastics (NPs), widespread pollutants in our environment and food chain, on the human intestinal epithelium, these organoids have been instrumental in elucidating the absorption mechanisms and potential biological impacts of plastic particles. Building on previously established protocols in human intestinal organoid culture, we herein detail a streamlined protocol for the cultivation, differentiation, and generation of organoid-derived monolayers. This protocol is tailored to generate monolayers incorporating microfold cells (M cells), key for intestinal particle uptake but often absent in current in vitro models. We provide validated protocols for the characterization of MPs/NPs via scanning electron microscopy (SEM) for detailed imaging and their introduction to intestinal epithelial monolayer cells via confocal immunostaining. Additionally, protocols to test the impacts of MP/NP exposure on the functions of the intestinal barrier using transendothelial electrical resistance (TEER) measurements and assessing inflammatory responses using cytokine profiling are detailed. Overall, our protocols enable the generation of human intestinal organoid monolayers, complete with the option of including or excluding M cells, offering crucial techniques for observing particle uptake and identifying inflammatory responses in intestinal epithelial cells to advance our knowledge of the potential effects of plastic pollution on human gut health. These approaches are also amendable to the study of other gut-related chemical and biological exposures and physiological responses due to the robust nature of the systems. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Human intestinal organoid culture and generation of monolayers with and without M cells Support Protocol 1: Culture of L-WRN and production of WRN-conditioned medium Support Protocol 2: Neuronal cell culture and integration into intestinal epithelium Support Protocol 3: Immune cell culture and integration into intestinal epithelium Basic Protocol 2: Scanning electron microscopy: sample preparation and imaging Basic Protocol 3: Immunostaining and confocal imaging of MP/NP uptake in organoid-derived monolayers Basic Protocol 4: Assessment of intestinal barrier function via TEER measurements Basic Protocol 5: Cytokine profiling using ELISA post-MP/NP exposure.


Asunto(s)
Microplásticos , Plásticos , Humanos , Microplásticos/metabolismo , Células CACO-2 , Plásticos/metabolismo , Mucosa Intestinal/metabolismo , Organoides , Epitelio , Citocinas/metabolismo
16.
Am J Gastroenterol ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534167

RESUMEN

BACKGROUND: Weight loss is the mainstay of management for patients with metabolic dysfunction-associated steatotic liver disease. We studied the impact of referral to MOVE!, a nationally-implemented behavioral weight loss program, on weight in MASLD patients. METHODS: This retrospective cohort study included 102,294 MASLD patients from 125 Veterans Health Administration centers from 2008-2022. RESULTS: Most patients lost no significant weight or gained weight. Increased engagement with MOVE! was associated with greater hazard of significant weight loss compared to no engagement. CONCLUSION: A minority of patients experienced significant weight loss through 5 years using lifestyle interventions alone.

17.
Sci Adv ; 10(13): eadj8898, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536930

RESUMEN

Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates.

18.
Int J Biol Macromol ; 266(Pt 1): 130989, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508560

RESUMEN

Wound dressings (WDs) are an essential component of wound management and serve as an artificial barrier to isolate the injured site from the external environment, thereby helping to prevent exogenous infections and supporting healing. However, maintaining a moist wound environment, providing protection from infection, good biocompatibility, and allowing for gas exchange, remain a challenge in device design. Functional wound dressings (FWDs) prepared from hybrid biological macromolecule-based materials can enhance efficacy of these systems for skin wound management. This review aims to provide an overview of the state-of-the-art FWDs within the field of wound management, with a specific focus on hybrid biomaterials, techniques, and applications developed over the past five years. In addition, we highlight the incorporation of biological macromolecules in WDs, the emergence of smart WDs, and discuss the existing challenges and future prospects for the development of advanced WDs.


Asunto(s)
Vendajes , Materiales Biocompatibles , Cicatrización de Heridas , Humanos , Materiales Biocompatibles/química , Sustancias Macromoleculares/química , Animales
19.
Phys Rev Lett ; 132(10): 101001, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38518313

RESUMEN

We propose a novel experimental method for probing light dark matter candidates. We show that an electro-optical material's refractive index is modified in the presence of a coherently oscillating dark matter background. A high-precision resonant Michelson interferometer can be used to read out this signal. The proposed detection scheme allows for the exploration of an uncharted parameter space of dark matter candidates over a wide range of masses-including masses exceeding a few tens of microelectronvolts, which is a challenging parameter space for microwave cavity haloscopes.

20.
Artículo en Inglés | MEDLINE | ID: mdl-38426802

RESUMEN

We present a novel method for detecting red tide (Karenia brevis) blooms off the west coast of Florida, driven by a neural network classifier that combines remote sensing data with spatiotemporally distributed in situ sample data. The network detects blooms over a 1-km grid, using seven ocean color features from the MODIS-Aqua satellite platform (2002-2021) and in situ sample data collected by the Florida Fish and Wildlife Conservation Commission and its partners. Model performance was demonstrably enhanced by two key innovations: depth normalization of satellite features and encoding of an in situ feature. The satellite features were normalized to adjust for depth-dependent bottom reflection effects in shallow coastal waters. The in situ data were used to engineer a feature that contextualizes recent nearby ground truth of K. brevis concentrations through a K-nearest neighbor spatiotemporal proximity weighting scheme. A rigorous experimental comparison revealed that our model outperforms existing remote detection methods presented in the literature and applied in practice. This classifier has strong potential to be operationalized to support more efficient monitoring and mitigation of future blooms, more accurate communication about their spatial extent and distribution, and a deeper scientific understanding of bloom dynamics, transport, drivers, and impacts in the region. This approach also has the potential to be adapted for the detection of other algal blooms in coastal waters. Integr Environ Assess Manag 2024;00:1-15. © 2024 SETAC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...