Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Syst Biol ; 72(5): 1119-1135, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366056

RESUMEN

Inference of deep phylogenies has almost exclusively used protein rather than DNA sequences based on the perception that protein sequences are less prone to homoplasy and saturation or to issues of compositional heterogeneity than DNA sequences. Here, we analyze a model of codon evolution under an idealized genetic code and demonstrate that those perceptions may be misconceptions. We conduct a simulation study to assess the utility of protein versus DNA sequences for inferring deep phylogenies, with protein-coding data generated under models of heterogeneous substitution processes across sites in the sequence and among lineages on the tree, and then analyzed using nucleotide, amino acid, and codon models. Analysis of DNA sequences under nucleotide-substitution models (possibly with the third codon positions excluded) recovered the correct tree at least as often as analysis of the corresponding protein sequences under modern amino acid models. We also applied the different data-analysis strategies to an empirical dataset to infer the metazoan phylogeny. Our results from both simulated and real data suggest that DNA sequences may be as useful as proteins for inferring deep phylogenies and should not be excluded from such analyses. Analysis of DNA data under nucleotide models has a major computational advantage over protein-data analysis, potentially making it feasible to use advanced models that account for among-site and among-lineage heterogeneity in the nucleotide-substitution process in inference of deep phylogenies.


Asunto(s)
Modelos Genéticos , Nucleótidos , Animales , Filogenia , Secuencia de Bases , Codón , Aminoácidos/genética , Evolución Molecular
2.
Mol Biol Evol ; 40(4)2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37096789

RESUMEN

The CODEML program in the PAML package has been widely used to analyze protein-coding gene sequences to estimate the synonymous and nonsynonymous rates (dS and dN) and to detect positive Darwinian selection driving protein evolution. For users not familiar with molecular evolutionary analysis, the program is known to have a steep learning curve. Here, we provide a step-by-step protocol to illustrate the commonly used tests available in the program, including the branch models, the site models, and the branch-site models, which can be used to detect positive selection driving adaptive protein evolution affecting particular lineages of the species phylogeny, affecting a subset of amino acid residues in the protein, and affecting a subset of sites along prespecified lineages, respectively. A data set of the myxovirus (Mx) genes from ten mammal and two bird species is used as an example. We discuss a new feature in CODEML that allows users to perform positive selection tests for multiple genes for the same set of taxa, as is common in modern genome-sequencing projects. The PAML package is distributed at https://github.com/abacus-gene/paml under the GNU license, with support provided at its discussion site (https://groups.google.com/g/pamlsoftware). Data files used in this protocol are available at https://github.com/abacus-gene/paml-tutorial.


Asunto(s)
Evolución Molecular , Programas Informáticos , Animales , Codón , Secuencia de Bases , Selección Genética , Filogenia , Mamíferos/genética
3.
Mol Phylogenet Evol ; 180: 107675, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36528333

RESUMEN

Mountains play a key role in forming biodiversity by acting both as barriers to gene flow among populations and as corridors for the migration of populations adapted to the conditions prevailing at high elevations. The Anatolian and the Zagros Mountains are located in the Alpine-Himalayan belt. The formation of these mountains has influenced the distribution and isolation of the animal population since the late Cenozoic. Apathya is a genus of lacertid lizards distributed along these mountains with two species, i.e., Apathya cappadocica and Apathya yassujica. The taxonomy status of lineages within the genus is complicated. In this study, we tried to collect extensive samples from throughout the distribution range, especially within the Zagros Mountains. Also, we used five genetic markers, two mitochondrial (COI and Cyt b) and three nuclear (C-mos, NKTR, and MCIR), to resolve the phylogenetic relationships within the genus and explain several possible scenarios that shaped multiple genetic structures. The combination of results in the current study indicated eight well-support monophyletic lineages that separated to two main groups; group 1 including A. c. cappadocica, A. c. muhtari and A. c. wolteri, group 2 contains four regional clades Turkey, Urmia, Baneh and Ilam, and finally a single clade belonging to the species A. yassujica. In contrast to previous studies, Apathya cappadocica urmiana was divided into four clades and three clades were recognized within Iranian boundaries. The clades have dispersed from Anatolia to adjacent regions in the south of Anatolia and the western Zagros Mountains. According to the evidence generated in this study this clade is paraphyletic. Based on our assumption, orogeny activities and also climate fluctuations in Middle Miocene and Pleistocene have influenced to formation of lineages. In this study we revisit the taxonomy of the genus and demonstrate that the species diversity was substantially underestimated. Our findings suggest that each of the eight clades corresponding to subspecies and distinct geographic regions deserve to be promoted to species level.


Asunto(s)
Lagartos , Animales , Filogenia , Lagartos/genética , Irán , ADN Mitocondrial/genética , Evolución Biológica , Variación Genética
4.
Mol Phylogenet Evol ; 178: 107651, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36306995

RESUMEN

Uropeltidae is a clade of small fossorial snakes (ca. 64 extant species) endemic to peninsular India and Sri Lanka. Uropeltid taxonomy has been confusing, and the status of some species has not been revised for over a century. Attempts to revise uropeltid systematics and undertake evolutionary studies have been hampered by incompletely sampled and incompletely resolved phylogenies. To address this issue, we take advantage of historical museum collections, including type specimens, and apply genome-wide shotgun (GWS) sequencing, along with recent field sampling (using Sanger sequencing) to establish a near-complete multilocus species-level phylogeny (ca. 87% complete at species level). This results in a phylogeny that supports the monophyly of all genera (if Brachyophidium is considered a junior synonym of Teretrurus), and provides a firm platform for future taxonomic revision. Sri Lankan uropeltids are probably monophyletic, indicating a single colonisation event of this island from Indian ancestors. However, the position of Rhinophis goweri (endemic to Eastern Ghats, southern India) is unclear and warrants further investigation, and evidence that it may nest within the Sri Lankan radiation indicates a possible recolonisation event. DNA sequence data and morphology suggest that currently recognised uropeltid species diversity is substantially underestimated. Our study highlights the benefits of integrating museum collections in molecular genetic analyses and their role in understanding the systematics and evolutionary history of understudied organismal groups.


Asunto(s)
Museos , Serpientes , Animales , Filogenia , Serpientes/genética , Secuencia de Bases , Sri Lanka
5.
Mol Biol Evol ; 39(8)2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35907248

RESUMEN

The multispecies coalescent (MSC) model accommodates both species divergences and within-species coalescent and provides a natural framework for phylogenetic analysis of genomic data when the gene trees vary across the genome. The MSC model implemented in the program bpp assumes a molecular clock and the Jukes-Cantor model, and is suitable for analyzing genomic data from closely related species. Here we extend our implementation to more general substitution models and relaxed clocks to allow the rate to vary among species. The MSC-with-relaxed-clock model allows the estimation of species divergence times and ancestral population sizes using genomic sequences sampled from contemporary species when the strict clock assumption is violated, and provides a simulation framework for evaluating species tree estimation methods. We conducted simulations and analyzed two real datasets to evaluate the utility of the new models. We confirm that the clock-JC model is adequate for inference of shallow trees with closely related species, but it is important to account for clock violation for distant species. Our simulation suggests that there is valuable phylogenetic information in the gene-tree branch lengths even if the molecular clock assumption is seriously violated, and the relaxed-clock models implemented in bpp are able to extract such information. Our Markov chain Monte Carlo algorithms suffer from mixing problems when used for species tree estimation under the relaxed clock and we discuss possible improvements. We conclude that the new models are currently most effective for estimating population parameters such as species divergence times when the species tree is fixed.


Asunto(s)
Modelos Genéticos , Teorema de Bayes , Simulación por Computador , Cadenas de Markov , Método de Montecarlo , Filogenia
6.
Mol Ecol Resour ; 22(1): 430-438, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34288531

RESUMEN

A wide range of data types can be used to delimit species and various computer-based tools dedicated to this task are now available. Although these formalized approaches have significantly contributed to increase the objectivity of species delimitation (SD) under different assumptions, they are not routinely used by alpha-taxonomists. One obvious shortcoming is the lack of interoperability among the various independently developed SD programs. Given the frequent incongruences between species partitions inferred by different SD approaches, researchers applying these methods often seek to compare these alternative species partitions to evaluate the robustness of the species boundaries. This procedure is excessively time consuming at present, and the lack of a standard format for species partitions is a major obstacle. Here, we propose a standardized format, SPART, to enable compatibility between different SD tools exporting or importing partitions. This format reports the partitions and describes, for each of them, the assignment of individuals to the "inferred species". The syntax also allows support values to be optionally reported, as well as original trees and the full command lines used in the respective SD analyses. Two variants of this format are proposed, overall using the same terminology but presenting the data either optimized for human readability (matricial SPART) or in a format in which each partition forms a separate block (SPART.XML). ABGD, DELINEATE, GMYC, PTP and TR2 have already been adapted to output SPART files and a new version of LIMES has been developed to import, export, merge and split them.

7.
iScience ; 24(2): 102110, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33659875

RESUMEN

The availability of complete sets of genes from many organisms makes it possible to identify genes unique to (or lost from) certain clades. This information is used to reconstruct phylogenetic trees; identify genes involved in the evolution of clade specific novelties; and for phylostratigraphy-identifying ages of genes in a given species. These investigations rely on accurately predicted orthologs. Here we use simulation to produce sets of orthologs that experience no gains or losses. We show that errors in identifying orthologs increase with higher rates of evolution. We use the predicted sets of orthologs, with errors, to reconstruct phylogenetic trees; to count gains and losses; and for phylostratigraphy. Our simulated data, containing information only from errors in orthology prediction, closely recapitulate findings from empirical data. We suggest published downstream analyses must be informed to a large extent by errors in orthology prediction that mimic expected patterns of gene evolution.

8.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33741592

RESUMEN

The bilaterally symmetric animals (Bilateria) are considered to comprise two monophyletic groups, Protostomia (Ecdysozoa and the Lophotrochozoa) and Deuterostomia (Chordata and the Xenambulacraria). Recent molecular phylogenetic studies have not consistently supported deuterostome monophyly. Here, we compare support for Protostomia and Deuterostomia using multiple, independent phylogenomic datasets. As expected, Protostomia is always strongly supported, especially by longer and higher-quality genes. Support for Deuterostomia, however, is always equivocal and barely higher than support for paraphyletic alternatives. Conditions that cause tree reconstruction errors-inadequate models, short internal branches, faster evolving genes, and unequal branch lengths-coincide with support for monophyletic deuterostomes. Simulation experiments show that support for Deuterostomia could be explained by systematic error. The branch between bilaterian and deuterostome common ancestors is, at best, very short, supporting the idea that the bilaterian ancestor may have been deuterostome-like. Our findings have important implications for the understanding of early animal evolution.


Asunto(s)
Evolución Molecular , Invertebrados , Animales , Invertebrados/genética , Filogenia
9.
Curr Biol ; 31(2): R59-R64, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33497629

RESUMEN

The effort to reconstruct the tree of life was revolutionized by the use of sequences of proteins and nucleic acids. Phylogenetic trees are now routinely inferred using hundreds of thousands of amino acid or nucleotide characters. It thus seems surprising that many aspects of the tree of life are still controversial; conflicting results between large scale phylogenomic studies show that errors remain common despite large datasets. These errors often result from systematic biases in the way sequences evolve. While the resulting systematic errors are well understood, it requires careful efforts to reduce their effects.


Asunto(s)
Exactitud de los Datos , Evolución Molecular , Filogenia , Heterogeneidad Genética , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico
10.
Sci Adv ; 6(50)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33310849

RESUMEN

The evolutionary relationships of two animal phyla, Ctenophora and Xenacoelomorpha, have proved highly contentious. Ctenophora have been proposed as the most distant relatives of all other animals (Ctenophora-first rather than the traditional Porifera-first). Xenacoelomorpha may be primitively simple relatives of all other bilaterally symmetrical animals (Nephrozoa) or simplified relatives of echinoderms and hemichordates (Xenambulacraria). In both cases, one of the alternative topologies must be a result of errors in tree reconstruction. Here, using empirical data and simulations, we show that the Ctenophora-first and Nephrozoa topologies (but not Porifera-first and Ambulacraria topologies) are strongly supported by analyses affected by systematic errors. Accommodating this finding suggests that empirical studies supporting Ctenophora-first and Nephrozoa trees are likely to be explained by systematic error. This would imply that the alternative Porifera-first and Xenambulacraria topologies, which are supported by analyses designed to minimize systematic error, are the most credible current alternatives.

12.
BMC Evol Biol ; 20(1): 64, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493355

RESUMEN

BACKGROUND: The latest advancements in DNA sequencing technologies have facilitated the resolution of the phylogeny of insects, yet parts of the tree of Holometabola remain unresolved. The phylogeny of Neuropterida has been extensively studied, but no strong consensus exists concerning the phylogenetic relationships within the order Neuroptera. Here, we assembled a novel transcriptomic dataset to address previously unresolved issues in the phylogeny of Neuropterida and to infer divergence times within the group. We tested the robustness of our phylogenetic estimates by comparing summary coalescent and concatenation-based phylogenetic approaches and by employing different quartet-based measures of phylogenomic incongruence, combined with data permutations. RESULTS: Our results suggest that the order Raphidioptera is sister to Neuroptera + Megaloptera. Coniopterygidae is inferred as sister to all remaining neuropteran families suggesting that larval cryptonephry could be a ground plan feature of Neuroptera. A clade that includes Nevrorthidae, Osmylidae, and Sisyridae (i.e. Osmyloidea) is inferred as sister to all other Neuroptera except Coniopterygidae, and Dilaridae is placed as sister to all remaining neuropteran families. Ithonidae is inferred as the sister group of monophyletic Myrmeleontiformia. The phylogenetic affinities of Chrysopidae and Hemerobiidae were dependent on the data type analyzed, and quartet-based analyses showed only weak support for the placement of Hemerobiidae as sister to Ithonidae + Myrmeleontiformia. Our molecular dating analyses suggest that most families of Neuropterida started to diversify in the Jurassic and our ancestral character state reconstructions suggest a primarily terrestrial environment of the larvae of Neuropterida and Neuroptera. CONCLUSION: Our extensive phylogenomic analyses consolidate several key aspects in the backbone phylogeny of Neuropterida, such as the basal placement of Coniopterygidae within Neuroptera and the monophyly of Osmyloidea. Furthermore, they provide new insights into the timing of diversification of Neuropterida. Despite the vast amount of analyzed molecular data, we found that certain nodes in the tree of Neuroptera are not robustly resolved. Therefore, we emphasize the importance of integrating the results of morphological analyses with those of sequence-based phylogenomics. We also suggest that comparative analyses of genomic meta-characters should be incorporated into future phylogenomic studies of Neuropterida.


Asunto(s)
Evolución Molecular , Holometabola/genética , Filogenia , Animales , Secuencia de Bases , Genómica , Larva/genética , Análisis de Secuencia de ADN , Transcriptoma
13.
Nat Rev Genet ; 21(7): 428-444, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32424311

RESUMEN

Knowing phylogenetic relationships among species is fundamental for many studies in biology. An accurate phylogenetic tree underpins our understanding of the major transitions in evolution, such as the emergence of new body plans or metabolism, and is key to inferring the origin of new genes, detecting molecular adaptation, understanding morphological character evolution and reconstructing demographic changes in recently diverged species. Although data are ever more plentiful and powerful analysis methods are available, there remain many challenges to reliable tree building. Here, we discuss the major steps of phylogenetic analysis, including identification of orthologous genes or proteins, multiple sequence alignment, and choice of substitution models and inference methodologies. Understanding the different sources of errors and the strategies to mitigate them is essential for assembling an accurate tree of life.


Asunto(s)
Genoma , Genómica , Modelos Genéticos , Filogenia , Animales , Biología Computacional/métodos , Cruzamientos Genéticos , Bases de Datos Genéticas , Evolución Molecular , Heterogeneidad Genética , Genómica/métodos , Humanos
14.
PeerJ ; 7: e7754, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31667012

RESUMEN

BACKGROUND: The classification of hepatitis viruses still predominantly relies on ad hoc criteria, i.e., phenotypic traits and arbitrary genetic distance thresholds. Given the subjectivity of such practices coupled with the constant sequencing of samples and discovery of new strains, this manual approach to virus classification becomes cumbersome and impossible to generalize. METHODS: Using two well-studied hepatitis virus datasets, HBV and HCV, we assess if computational methods for molecular species delimitation that are typically applied to barcoding biodiversity studies can also be successfully deployed for hepatitis virus classification. For comparison, we also used ABGD, a tool that in contrast to other distance methods attempts to automatically identify the barcoding gap using pairwise genetic distances for a set of aligned input sequences. RESULTS­DISCUSSION: We found that the mPTP species delimitation tool identified even without adapting its default parameters taxonomic clusters that either correspond to the currently acknowledged genotypes or to known subdivision of genotypes (subtypes or subgenotypes). In the cases where the delimited cluster corresponded to subtype or subgenotype, there were previous concerns that their status may be underestimated. The clusters obtained from the ABGD analysis differed depending on the parameters used. However, under certain values the results were very similar to the taxonomy and mPTP which indicates the usefulness of distance based methods in virus taxonomy under appropriate parameter settings. The overlap of predicted clusters with taxonomically acknowledged genotypes implies that virus classification can be successfully automated.

15.
Proc Natl Acad Sci U S A ; 116(8): 3024-3029, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30642969

RESUMEN

Polyneoptera represents one of the major lineages of winged insects, comprising around 40,000 extant species in 10 traditional orders, including grasshoppers, roaches, and stoneflies. Many important aspects of polyneopteran evolution, such as their phylogenetic relationships, changes in their external appearance, their habitat preferences, and social behavior, are unresolved and are a major enigma in entomology. These ambiguities also have direct consequences for our understanding of the evolution of winged insects in general; for example, with respect to the ancestral habitats of adults and juveniles. We addressed these issues with a large-scale phylogenomic analysis and used the reconstructed phylogenetic relationships to trace the evolution of 112 characters associated with the external appearance and the lifestyle of winged insects. Our inferences suggest that the last common ancestors of Polyneoptera and of the winged insects were terrestrial throughout their lives, implying that wings did not evolve in an aquatic environment. The appearance of the first polyneopteran insect was mainly characterized by ancestral traits such as long segmented abdominal appendages and biting mouthparts held below the head capsule. This ancestor lived in association with the ground, which led to various specializations including hardened forewings and unique tarsal attachment structures. However, within Polyneoptera, several groups switched separately to a life on plants. In contrast to a previous hypothesis, we found that social behavior was not part of the polyneopteran ground plan. In other traits, such as the biting mouthparts, Polyneoptera shows a high degree of evolutionary conservatism unique among the major lineages of winged insects.


Asunto(s)
Evolución Biológica , Insectos/fisiología , Neoptera/fisiología , Alas de Animales/fisiología , Animales , Insectos/genética , Neoptera/genética , Filogenia
16.
PeerJ ; 5: e3373, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28607837

RESUMEN

BACKGROUND: We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. METHODS: Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. RESULTS: The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. DISCUSSION: With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks.

17.
Mol Phylogenet Evol ; 103: 199-214, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27404043

RESUMEN

Morphological and DNA data support that the East Mediterranean snake-eyed skink Ablepharus kitaibelii represents a species complex that includes four species A. kitaibelii, A. budaki, A. chernovi, and A. rueppellii, highlighting the need of its taxonomic reevaluation. Here, we used Bayesian and Maximum Likelihood methods to estimate the phylogenetic relationships of all members of the complex based on two mitochondrial (cyt b, 16S rRNA) and two nuclear markers (MC1R, and NKTR) and using Chalcides, Eumeces, and Eutropis as outgroups. The biogeographic history of the complex was also investigated through the application of several phylogeographic (BEAST) and biogeographic (BBM) analyses. Paleogeographic and paleoclimatic data were used to support the inferred phylogeographic patterns. The A. kitaibelli species complex exhibits high genetic diversity, revealing cases of hidden diversity and cases of non-monophyletic species such as A. kitaibelii and A. budaki. Our results indicate that A. pannonicus branches off first and a group that comprises specimens of A. kitaibelli and A. budaki from Kastelorizo Island group (southeast Greece) and southwest Turkey, respectively is differentiated from the rest A. kitaibelli and A. budaki populations and may represent a new species. The estimated divergence times place the origin of the complex in the Middle Miocene (∼16Mya) and the divergence of most currently recognized species in the Late Miocene. The inferred ancestral distribution suggests that the complex originated in Anatolia, supposing that several vicariance and dispersal events that are related with the formation of the Mid-Aegean Trench, the Anatolian Diagonal and the orogenesis of the mountain chains in southern and eastern Anatolia have led to current distribution pattern of A. kitaibelii species complex in the Balkans and Middle East.


Asunto(s)
Lagartos/clasificación , Animales , Peninsula Balcánica , Teorema de Bayes , Citocromos b/clasificación , Citocromos b/genética , Citocromos b/metabolismo , ADN/química , ADN/aislamiento & purificación , ADN/metabolismo , ADN Mitocondrial/clasificación , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Variación Genética , Grecia , Funciones de Verosimilitud , Lagartos/genética , Filogenia , Filogeografía , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Receptor de Melanocortina Tipo 1/clasificación , Receptor de Melanocortina Tipo 1/genética , Receptor de Melanocortina Tipo 1/metabolismo , Receptores Inmunológicos/clasificación , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Turquía
18.
Artículo en Inglés | MEDLINE | ID: mdl-27325832

RESUMEN

The fossilized birth-death (FBD) model can make use of information contained in multiple fossils representing the same clade, and we here apply this model to infer divergence times in beeches (genus Fagus), using 53 fossils and nuclear sequences for all nine species. We also apply FBD dating to the fern clade Osmundaceae, with about 12 living species and 36 fossils. Fagus nuclear sequences cannot be aligned with those of other Fagaceae, and we therefore use Bayes factors to choose among alternative root positions. The crown group of Fagus is dated to 53 (62-43) Ma; divergence of the sole American species to 44 (51-39) Ma and divergence between Central European F. sylvatica and Eastern Mediterranean F. orientalis to 8.7 (20-1.8) Ma, unexpectedly old. The FBD model can accommodate fossils as sampled ancestors or as extinct or unobserved lineages; however, this makes its raw output, which shows all fossils on short or long branches, problematic to interpret. We use hand-drawn depictions and a bipartition network to illustrate the uncertain placements of fossils. Inferred speciation and extinction rates imply approximately 5× higher evolutionary turnover in Fagus than in Osmundaceae, fitting a hypothesized low turnover in plants adapted to low-nutrient conditions.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.


Asunto(s)
Fagus/fisiología , Helechos/fisiología , Fósiles/anatomía & histología , Especiación Genética , Filogenia , Evolución Biológica , Evolución Molecular , Modelos Biológicos , Proteínas de Plantas/genética , Análisis de Secuencia de ADN
19.
Syst Biol ; 64(3): 396-405, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25503771

RESUMEN

A major concern in molecular clock dating is how to use information from the fossil record to calibrate genetic distances from DNA sequences. Here we apply three Bayesian dating methods that differ in how calibration is achieved-"node dating" (ND) in BEAST, "total evidence" (TE) dating in MrBayes, and the "fossilized birth-death" (FBD) in FDPPDiv-to infer divergence times in the royal ferns. Osmundaceae have 16-17 species in four genera, two mainly in the Northern Hemisphere and two in South Africa and Australasia; they are the sister clade to the remaining leptosporangiate ferns. Their fossil record consists of at least 150 species in ∼17 genera. For ND, we used the five oldest fossils, whereas for TE and FBD dating, which do not require forcing fossils to nodes and thus can use more fossils, we included up to 36 rhizomes and frond compression/impression fossils, which for TE dating were scored for 33 morphological characters. We also subsampled 10%, 25%, and 50% of the 36 fossils to assess model sensitivity. FBD-derived divergence ages were generally greater than those inferred from ND; two of seven TE-derived ages agreed with FBD-obtained ages, the others were much younger or much older than ND or FBD ages. We prefer the FBD-derived ages because they best fit the Osmundales fossil record (including Triassic fossils not used in our study). Under the preferred model, the clade encompassing extant Osmundaceae (and many fossils) dates to the latest Paleozoic to Early Triassic; divergences of the extant species occurred during the Neogene. Under the assumption of constant speciation and extinction rates, the FBD approach yielded speciation and extinction rates that overlapped those obtained from just neontological data. However, FBD estimates of speciation and extinction are sensitive to violations in the assumption of continuous fossil sampling; therefore, these estimates should be treated with caution.


Asunto(s)
Clasificación/métodos , Helechos/clasificación , Fósiles , Filogenia , Teorema de Bayes , Calibración , Extinción Biológica , Especiación Genética , Tiempo
20.
Bioinformatics ; 29(22): 2869-76, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23990417

RESUMEN

MOTIVATION: Sequence-based methods to delimit species are central to DNA taxonomy, microbial community surveys and DNA metabarcoding studies. Current approaches either rely on simple sequence similarity thresholds (OTU-picking) or on complex and compute-intensive evolutionary models. The OTU-picking methods scale well on large datasets, but the results are highly sensitive to the similarity threshold. Coalescent-based species delimitation approaches often rely on Bayesian statistics and Markov Chain Monte Carlo sampling, and can therefore only be applied to small datasets. RESULTS: We introduce the Poisson tree processes (PTP) model to infer putative species boundaries on a given phylogenetic input tree. We also integrate PTP with our evolutionary placement algorithm (EPA-PTP) to count the number of species in phylogenetic placements. We compare our approaches with popular OTU-picking methods and the General Mixed Yule Coalescent (GMYC) model. For de novo species delimitation, the stand-alone PTP model generally outperforms GYMC as well as OTU-picking methods when evolutionary distances between species are small. PTP neither requires an ultrametric input tree nor a sequence similarity threshold as input. In the open reference species delimitation approach, EPA-PTP yields more accurate results than de novo species delimitation methods. Finally, EPA-PTP scales on large datasets because it relies on the parallel implementations of the EPA and RAxML, thereby allowing to delimit species in high-throughput sequencing data. AVAILABILITY AND IMPLEMENTATION: The code is freely available at www.exelixis-lab.org/software.html. .


Asunto(s)
Filogenia , Algoritmos , Animales , Distribución de Poisson , Análisis de Secuencia de ADN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...