Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 159(22)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38063226

RESUMEN

We analyze from a theoretical perspective recent experiments where chiral discrimination in biological systems was established using Atomic Force Microscopy (AFM). Even though intermolecular forces involved in AFM measurements have different origins, i.e., electrostatic, bonding, exchange, and multipole interactions, the key molecular forces involved in enantiospecific biorecognition are electronic spin exchange and van der Waals (vdW) dispersion forces, which are sensitive to spin-orbit interaction (SOI) and space-inversion symmetry breaking in chiral molecules. The vdW contribution to chiral discrimination emerges from the inclusion of SOI and spin fluctuations due to the chiral-induced selectivity effect, a result we have recently demonstrated theoretically. Considering these two enantiospecific contributions, we show that the AFM results regarding chiral recognition can be understood in terms of a simple physical model that describes the different adhesion forces associated with different electron spin polarization generated in the (DD), (LL), and (DL) enantiomeric pairs, as arising from the spin part of the exchange and vdW contributions. The model can successfully produce physically reasonable parameters accounting for the vdW and exchange interaction strength, accounting for the chiral discrimination effect. This fact has profound implications in biorecognition where the relevant intermolecular interactions in the intermediate-distance regime are clearly connected to vdW forces.

2.
Nat Commun ; 14(1): 6351, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816811

RESUMEN

Homochirality is a hallmark of life on Earth. To achieve and maintain homochirality within a prebiotic network, the presence of an environmental factor acting as a chiral agent and providing a persistent chiral bias to prebiotic chemistry is highly advantageous. Magnetized surfaces are prebiotically plausible chiral agents due to the chiral-induced spin selectivity (CISS) effect, and they were utilized to attain homochiral ribose-aminooxazoline (RAO), an RNA precursor. However, natural magnetic minerals are typically weakly magnetized, necessitating mechanisms to enhance their magnetization for their use as effective chiral agents. Here, we report the magnetization of magnetic surfaces by crystallizing enantiopure RAO, whereby chiral molecules induce a uniform surface magnetization due to the CISS effect, which spreads across the magnetic surface akin to an avalanche. Chirality-induced avalanche magnetization enables a feedback between chiral molecules and magnetic surfaces, which can amplify a weak magnetization and allow for highly efficient spin-selective processes on magnetic minerals.


Asunto(s)
Avalanchas , Precursores del ARN , Óxido Ferrosoférrico , Estereoisomerismo , Ribosa/química
3.
J Chem Phys ; 159(6)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578062

RESUMEN

Chiral molecules have the potential for creating new magnetic devices by locally manipulating the magnetic properties of metallic surfaces. When chiral polypeptides chemisorb onto ferromagnets, they can induce magnetization locally by spin exchange interactions. However, direct imaging of surface magnetization changes induced by chiral molecules was not previously realized. Here, we use magneto-optical Kerr microscopy to image domains in thin films and show that chiral polypeptides strongly pin domains, increasing the coercive field locally. In our study, we also observe a rotation of the easy magnetic axis toward the out-of-plane, depending on the sample's domain size and the adsorption area. These findings show the potential of chiral molecules to control and manipulate magnetization and open new avenues for future research on the relationship between chirality and magnetization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...