Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Epidemiol Biomarkers Prev ; 32(9): 1153-1159, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364297

RESUMEN

BACKGROUND: DEPendency of association on the number of Top Hits (DEPTH) is an approach to identify candidate susceptibility regions by considering the risk signals from overlapping groups of sequential variants across the genome. METHODS: We applied a DEPTH analysis using a sliding window of 200 SNPs to colorectal cancer data from the Colon Cancer Family Registry (CCFR; 5,735 cases and 3,688 controls), and Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO; 8,865 cases and 10,285 controls) studies. A DEPTH score > 1 was used to identify candidate susceptibility regions common to both analyses. We compared DEPTH results against those from conventional genome-wide association study (GWAS) analyses of these two studies as well as against 132 published susceptibility regions. RESULTS: Initial DEPTH analysis revealed 2,622 (CCFR) and 3,686 (GECCO) candidate susceptibility regions, of which 569 were common to both studies. Bootstrapping revealed 40 and 49 candidate susceptibility regions in the CCFR and GECCO data sets, respectively. Notably, DEPTH identified at least 82 regions that would not be detected using conventional GWAS methods, nor had they been identified by previous colorectal cancer GWASs. We found four reproducible candidate susceptibility regions (2q22.2, 2q33.1, 6p21.32, 13q14.3). The highest DEPTH scores were in the human leukocyte antigen locus at 6p21 where the strongest associated SNPs were rs762216297, rs149490268, rs114741460, and rs199707618 for the CCFR data, and rs9270761 for the GECCO data. CONCLUSIONS: DEPTH can identify candidate susceptibility regions for colorectal cancer not identified using conventional analyses of larger datasets. IMPACT: DEPTH has potential as a powerful complementary tool to conventional GWAS analyses for discovering susceptibility regions within the genome.


Asunto(s)
Neoplasias Colorrectales , Predisposición Genética a la Enfermedad , Humanos , Estudio de Asociación del Genoma Completo/métodos , Factores de Riesgo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/epidemiología , Proteínas , Polimorfismo de Nucleótido Simple
2.
PLoS One ; 13(4): e0196245, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29698419

RESUMEN

BACKGROUND: Clustering of breast and colorectal cancer has been observed within some families and cannot be explained by chance or known high-risk mutations in major susceptibility genes. Potential shared genetic susceptibility between breast and colorectal cancer, not explained by high-penetrance genes, has been postulated. We hypothesized that yet undiscovered genetic variants predispose to a breast-colorectal cancer phenotype. METHODS: To identify variants associated with a breast-colorectal cancer phenotype, we analyzed genome-wide association study (GWAS) data from cases and controls that met the following criteria: cases (n = 985) were women with breast cancer who had one or more first- or second-degree relatives with colorectal cancer, men/women with colorectal cancer who had one or more first- or second-degree relatives with breast cancer, and women diagnosed with both breast and colorectal cancer. Controls (n = 1769), were unrelated, breast and colorectal cancer-free, and age- and sex- frequency-matched to cases. After imputation, 6,220,060 variants were analyzed using the discovery set and variants associated with the breast-colorectal cancer phenotype at P<5.0E-04 (n = 549, at 60 loci) were analyzed for replication (n = 293 cases and 2,103 controls). RESULTS: Multiple correlated SNPs in intron 1 of the ROBO1 gene were suggestively associated with the breast-colorectal cancer phenotype in the discovery and replication data (most significant; rs7430339, Pdiscovery = 1.2E-04; rs7429100, Preplication = 2.8E-03). In meta-analysis of the discovery and replication data, the most significant association remained at rs7429100 (P = 1.84E-06). CONCLUSION: The results of this exploratory analysis did not find clear evidence for a susceptibility locus with a pleiotropic effect on hereditary breast and colorectal cancer risk, although the suggestive association of genetic variation in the region of ROBO1, a potential tumor suppressor gene, merits further investigation.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias Colorrectales/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Adulto , Anciano , Neoplasias de la Mama/patología , Análisis por Conglomerados , Neoplasias Colorrectales/patología , Femenino , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Fenotipo , Receptores Inmunológicos/genética , Proteínas Roundabout
3.
Cancer Epidemiol Biomarkers Prev ; 25(12): 1619-1624, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27539266

RESUMEN

BACKGROUND: We have developed a genome-wide association study analysis method called DEPTH (DEPendency of association on the number of Top Hits) to identify genomic regions potentially associated with disease by considering overlapping groups of contiguous markers (e.g., SNPs) across the genome. DEPTH is a machine learning algorithm for feature ranking of ultra-high dimensional datasets, built from well-established statistical tools such as bootstrapping, penalized regression, and decision trees. Unlike marginal regression, which considers each SNP individually, the key idea behind DEPTH is to rank groups of SNPs in terms of their joint strength of association with the outcome. Our aim was to compare the performance of DEPTH with that of standard logistic regression analysis. METHODS: We selected 1,854 prostate cancer cases and 1,894 controls from the UK for whom 541,129 SNPs were measured using the Illumina Infinium HumanHap550 array. Confirmation was sought using 4,152 cases and 2,874 controls, ascertained from the UK and Australia, for whom 211,155 SNPs were measured using the iCOGS Illumina Infinium array. RESULTS: From the DEPTH analysis, we identified 14 regions associated with prostate cancer risk that had been reported previously, five of which would not have been identified by conventional logistic regression. We also identified 112 novel putative susceptibility regions. CONCLUSIONS: DEPTH can reveal new risk-associated regions that would not have been identified using a conventional logistic regression analysis of individual SNPs. IMPACT: This study demonstrates that the DEPTH algorithm could identify additional genetic susceptibility regions that merit further investigation. Cancer Epidemiol Biomarkers Prev; 25(12); 1619-24. ©2016 AACR.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Aprendizaje Automático , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/genética , Australia , Humanos , Masculino , Persona de Mediana Edad , Reino Unido
4.
PLoS One ; 7(8): e42380, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22879957

RESUMEN

The 6q25.1 locus was first identified via a genome-wide association study (GWAS) in Chinese women and marked by single nucleotide polymorphism (SNP) rs2046210, approximately 180 Kb upstream of ESR1. There have been conflicting reports about the association of this locus with breast cancer in Europeans, and a GWAS in Europeans identified a different SNP, tagged here by rs12662670. We examined the associations of both SNPs in up to 61,689 cases and 58,822 controls from forty-four studies collaborating in the Breast Cancer Association Consortium, of which four studies were of Asian and 39 of European descent. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Case-only analyses were used to compare SNP effects in Estrogen Receptor positive (ER+) versus negative (ER-) tumours. Models including both SNPs were fitted to investigate whether the SNP effects were independent. Both SNPs are significantly associated with breast cancer risk in both ethnic groups. Per-allele ORs are higher in Asian than in European studies [rs2046210: OR (A/G) = 1.36 (95% CI 1.26-1.48), p = 7.6 × 10(-14) in Asians and 1.09 (95% CI 1.07-1.11), p = 6.8 × 10(-18) in Europeans. rs12662670: OR (G/T) = 1.29 (95% CI 1.19-1.41), p = 1.2 × 10(-9) in Asians and 1.12 (95% CI 1.08-1.17), p = 3.8 × 10(-9) in Europeans]. SNP rs2046210 is associated with a significantly greater risk of ER- than ER+ tumours in Europeans [OR (ER-) = 1.20 (95% CI 1.15-1.25), p = 1.8 × 10(-17) versus OR (ER+) = 1.07 (95% CI 1.04-1.1), p = 1.3 × 10(-7), p(heterogeneity) = 5.1 × 10(-6)]. In these Asian studies, by contrast, there is no clear evidence of a differential association by tumour receptor status. Each SNP is associated with risk after adjustment for the other SNP. These results suggest the presence of two variants at 6q25.1 each independently associated with breast cancer risk in Asians and in Europeans. Of these two, the one tagged by rs2046210 is associated with a greater risk of ER- tumours.


Asunto(s)
Neoplasias de la Mama/genética , Cromosomas Humanos Par 6/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple/genética , Asia , Europa (Continente) , Femenino , Haplotipos/genética , Humanos , Desequilibrio de Ligamiento/genética , Receptores de Estrógenos/genética , Factores de Riesgo
5.
Artículo en Inglés | MEDLINE | ID: mdl-23366127

RESUMEN

Most published GWAS do not examine SNP interactions due to the high computational complexity of computing p-values for the interaction terms. Our aim is to utilize supercomputing resources to apply complex statistical techniques to the world's accumulating GWAS, epidemiology, survival and pathology data to uncover more information about genetic and environmental risk, biology and aetiology. We performed the Bayesian Posterior Probability test on a pseudo data set with 500,000 single nucleotide polymorphism and 100 samples as proof of principle. We carried out strong scaling simulations on 2 to 4,096 processing cores with factor 2 increments in partition size. On two processing cores, the run time is 317h, i.e. almost two weeks, compared to less than 10 minutes on 4,096 processing cores. The speedup factor is 2,020 that is very close to the theoretical value of 2,048. This work demonstrates the feasibility of performing exhaustive higher order analysis of GWAS studies using independence testing for contingency tables. We are now in a position to employ supercomputers with hundreds of thousands of threads for higher order analysis of GWAS data using complex statistics.


Asunto(s)
Biología Computacional/métodos , Estudio de Asociación del Genoma Completo/métodos , Teorema de Bayes , Simulación por Computador , Humanos , Método de Montecarlo , Neoplasias/genética , Fenotipo , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...